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ABSTRACT 
 
 
 

Consensus methods require that the techniques have no bias and have 

skill.  The accuracy of six statistical and dynamical model tropical cyclone 

intensity guidance techniques was examined for western North Pacific tropical 

cyclones during the 2003 and 2004 seasons using the climatology and 

persistence technique called ST5D as a measure of skill.  A framework of three 

phases: (i) initial intensification; (ii) maximum intensity with possible 

decay/reintensification cycles; and (iii) decay was used to examine the skill.   

During both the formation and intensification stages, only about 60% of 

the 24-36 h forecasts were within +/- 10 kt, and the predominant tendency was to 

under-forecast the intensity.  None of the guidance techniques predicted rapid 

intensification well.  All of the techniques tended to under-forecast maximum 

intensity and miss decay/reintensification cycles.  A few of the techniques 

provided useful guidance on the magnitude of the decay, although the timing of 

the decay was often missed.  Whereas about 60-70% of the 12-h to 72-h 

forecasts by the various techniques during the decay phase were within +/- 10 kt, 

the strong bias was to not decay the cyclone rapidly enough.  In general the 

techniques predict too narrow a range of intensity changes for both intensification 

and decay.   
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I. INTRODUCTION 

A. MOTIVATION 
1. Intensity Guidance 
Tropical cyclone (TC) intensity forecasts have not improved 

commensurate with the increasing accuracy of TC track forecasts.  While recent 

research efforts and tropical operational forecasting practices have increased the 

accuracy of three-, four-, and five-day TC track forecasts, contemporary TC 

intensity forecasts have a large inherent uncertainty (DeMaria and Kaplan 1999).   

Even though improvements are planned for the various numerical (higher 

resolution, improved physics, and faster computing times) and statistical (larger 

samples and additional predictors) models, shorter-term ‘corrective’ efforts such 

as better utilization of this guidance must also be considered.  For example, Carr 

and Elsberry (1994) demonstrated that understanding model TC track errors 

could lead to more accurate forecasting, which prompted the development of the 

Systematic Approach Forecast Aid (SAFA).  Once applied at the Joint Typhoon 

Warning Center (JTWC), SAFA became a major contributor to improved official 

track forecasts between 1999 and 2002 (Jeffries and Fukada webpage 

reference, cited 2005). 

Unfortunately, operational forecasters have not been able to realize the 

same success with TC intensity forecasting, where large intensity errors become 

evident beyond 24 h (Table 1).  Although some small year-to-year variability 

about the five-year means is noted for the 24-, 48-, and 72-h intensity forecasts, 

this variability is much larger for the 96- and 120-h forecasts, which have been 

officially released only since May 2003.  The tendency for the longer-term 

forecasts errors to level off is due to at least two factors:  (i) a decreasing number 

of forecasts verified, and only for those ‘well-behaved’ storms; and (ii) forecasts 

of storms that undergo extratropical transition and continue over land are not 

verified.   
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Year 24h 48h 72h 96h 120h
2004 11 17 20 22 26
2003 11 16 19 21 19
2002 10 17 22 32 37
2001 11 17 21 29 28
2000 12 19 24 24 30

Five-year Mean 11 17 21 26 28

JTWC Absolute Mean Intensity Error (kt)

 
Table 1.1 Mean absolute intensity errors (kt) at the JTWC.  The table was 

adapted from the JTWC forecast statistics webpage.  [Available 
online at http://www.npmoc.navy.mil/jtwc/climostats/fcsttrkerr.html 
(Current as of 18 Feb 05)].   

 
Typhoon (hurricane) intensity prediction is arguably more difficult than 

track prediction alone, and the two forecasts are interrelated since the current 

storm location and a future path will determine the atmosphere/ocean 

environmental forcing on the storm.  That is, a track into a favorable environment 

most likely leads to intensification, while a hostile environment ultimately leads to 

decay.  Thus, an accurate intensity forecast requires an accurate track forecast.  

Internal processes such as eyewall replacement cycles and external interactions 

with mid-latitude systems or the ocean also play an important role in the intensity 

changes of TCs.   

Figure 1.1 is an illustration of intensity guidance errors produced by one 

intensity model for a specific storm during 2003.  This example clearly illustrates 

that skillful (reliable) TC intensity guidance may not be available from one 

forecast interval to the next.  As will be described below, this example illustrates 

several types of intensity errors.  The question is whether the technique 

consistently makes similar errors in the same stage of that life cycle.  That is, can 

the tropical cyclone forecaster be given guidance as to when (and when not) the 

techniques will be erroneous?  If yes, then the selective consensus approach of 

Carr and Elsberry that contributed to dramatic improvements in track forecasting 

might be adaptable for intensity forecasting.  That is, consensus intensity 

forecasts may be generated as new intensity guidance becomes available in 

conjunction with a well-developed meteorological knowledge base regarding 

storm structure/motion, known technique biases/errors, and forecaster 

judgments.  
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Example of Intensity Change Guidance Errors
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Figure 1.1 Statistical Typhoon Intensity Prediction Scheme (STIP) guidance 

for Storm #2 during 2003.  The heavy blue line represents the 
observed (best track) storm intensity.  Colored lines illustrate 
intensity forecasts each 6 h.  The errors may be described as: early 
over-intensification; subsequent under-intensification; miss ‘rapid’ 
intensification; miss peak intensity; miss decay/reintensification 
cycles; premature decay; miss ‘rapid’ decay; and incorrect timing 
and rate of decay. 

 
2. Ramifications of TC Intensity Forecasts  
Tropical meteorology and oceanography (METOC) considerations are 

myriad in the western North Pacific Theater of Operations.  While there are 

significant military aviation hazards associated with tropical systems, the 

preeminent threat to life and property is at sea.  Due to the sheer number of 

vessels and logistical complexities, the United States Navy arguably remains 

most vulnerable to TC activity—especially in the vast Pacific Ocean.  Moreover, 

fixed military installations often lie in the path, and most certainly come under the 

influence, of tropical cyclones.  Some of the most prominent examples are:  

Kadena Air Base, Okinawa; Yokota Air Base, Japan; Yungson Air Base, Republic 

of Korea; Yokosuka Naval Installation, Japan; and Sasabo Naval Installation, 

Japan.  
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Each TC forecast initiates a series of decision-making processes through 

varying levels of military and civil organizations.  Planners must subsequently 

modify shipping routes, curtail military maneuvers, or cancel commercial fishing 

operations to account for tropical weather impacts:  dangerous significant wave 

heights; extremely high near-surface wind speeds; and near-zero visibility in 

heavy rain.  Inaccurate TC track and intensity forecasts stress the socio-

economic decision-making process, and lead to significant costs for evacuation 

(false alarm) or even greater losses due to damaged materiel—even loss of life—

if TC effects are not well forecast.   

 
B. TROPICAL CYCLONE INTENSITY FORECAST EXAMPLES 

1. Hurricane Charley (Florida, U.S., 2004) 
Hurricane Charley intensified rapidly prior to landfall on the west coast of 

Florida on 13 August 2004.  The National Hurricane Center (NHC) Tropical 

Cyclone Report for Hurricane Charley described a central pressure drop from 

965 mb (1403 UTC) to 941 mb (1957 UTC) and an intensity increase from 90 kt 

(105 mph) to 125 kt (145 mph) within six hours.  The official forecast track closely 

followed a ‘consensus’ model track forecast, and the forecast track error 

remained small.  However, statistical and dynamical forecast aids did not capture 

the period of rapid intensification.  While the official NHC forecast called for a 

strengthening storm (CAT 3 possible at landfall), the rate at which Charley 

deepened and the intensity it reached were not anticipated.  In fact, only one 

intensity technique (Coupled Hurricane Intensity Prediction System—CHIPS) 

indicated a 120-plus knot storm.  Whereas other available intensity guidance 

predicted a CAT 3 storm (or less) at landfall, the storm made landfall as a strong 

CAT 4.      

2. Typhoon Nari (Okinawa, Japan 2001) 
In the western North Pacific, Typhoon Nari (2001) proved a difficult track 

and intensity forecast.  The JTWC Annual Tropical Cyclone Report 2001 (ATCR 

2001) confirmed intensification (from 50 kt to 70 kt maximum sustained surface 

wind speed) over a six-hour period just before the storm made a second landfall 
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on Okinawa.  Kadena Air Base near Naha, Okinawa, recorded a 66 kt sustained 

wind speed with a 99 kt gust.  The TC track was even more problematic, since it 

had a series of cyclonic loops, with each loop bringing the storm center close to 

or across the island. 

As the Nari example reveals, the potential for rapid intensification is 

certainly possible throughout the tropical western North Pacific, where 

forecasters at the JTWC are responsible for issuing tropical cyclone warnings for 

large portions of the Pacific (and Indian) Ocean basin(s).  According to the JTWC 

Mission webpage, JTWC warnings are provided to all branches of the U. S. 

Department of Defense, and other U. S. government departments and their 

agencies such as the State Department (U.S Embassies and Consulates), and 

the Department of Commerce (U. S. National Weather Service).  Moreover, 

forecasters at the JTWC must give tropical cyclone warnings for an array of U.S. 

military assets scattered throughout a tremendous area of responsibility, from the 

dateline westward to the African coast. 

 
C. CHAPTER OVERVIEW 

Whereas this introduction briefly describes TC forecasting challenges and 

stresses the importance of accurate TC prediction, the objective of this thesis is 

to evaluate TC intensity guidance accuracy using a conceptual intensity model 

for different stages of a TC life cycle.  First, Chapter II provides some background 

on TC intensification and subsequent decay.  Next, Chapter III introduces the 

idealized framework for TC intensity change analysis, summarizes storm 

information during the western North Pacific 2003 and 2004 tropical seasons, 

and introduces the TC intensity guidance techniques that are the focus of this 

thesis.  The results from conventional intensity guidance evaluations as well as 

additional results from subjective model analyses are described in Chapter IV.  

Finally, Chapter V summarizes the key findings of this study and offers 

recommendations for future work.  Moreover, this section describes the potential 

strengths and weaknesses of the intensity change techniques by giving 
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operational forecasters additional knowledge of where/when available intensity 

guidance may depart from reality. 
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II. TROPICAL CYCLONE INTENSIFICATION AND DECAY 

A. TROPICAL CYCLONE POTENTIAL INTENSITY 

Emanuel (1986, 1995a, 1995b, and 2004) and Holland (1997) examined 

the theoretical upper bound on TC intensity that might be achieved in conditions 

of minimal interaction between storms and their environment.  Because favorable 

conditions for intensification must exist for some time after formation until the 

maximum intensity can be achieved, most of the time the storm is well below its 

maximum intensity.  Nevertheless, the supposition is that an upper bound on TC 

intensity (minimum sea-level pressure (SLP) or maximum surface winds) can be 

calculated using one of these two methods. 

Emanuel’s technique uses the energy cycle of the storm to estimate 

maximum surface winds.  Here, air parcels drawn toward the storm center 

acquire heat (high equivalent potential temperatures) from the ocean surface.  As 

water vapor condenses during ascent, latent heat is converted to sensible heat, 

which results in observable temperature increases within the system.  This 

‘deposition’ of heat at high altitudes contributes to a decrease in surface pressure 

and a corresponding increase of surface wind speed (via gradient wind relation).  

An example of Emanuel’s theory applied to real-time analyses of tropical basin 

maximum potential intensity (MPI, or simply PI) is given in Figure 2.1. 

Holland (1997) expands upon research by Miller (1958).  He proposes that 

the maximum temperature attainable in an eyewall may be estimated given the 

thermodynamic properties of the low-level storm inflow.  In turn, this produces an 

estimate of the maximum temperature attainable in the eye owing to 

compressional warming of sinking air, and thereby leads to SLP and surface 

wind calculations.  One can see that both of the Emanuel and Holland intensity 

limit calculations ultimately depend on sea-surface temperature (SST) and the 

vertical temperature structure of the atmosphere—variables that are calculable 

via regular data sets.  Of greater note, both PI approaches yield similar results.  

Nevertheless, research suggests PI calculations work well as a limit to intensity, 
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but do not work well as a predictor of individual storm intensity (Emanuel 

webpage reference, cited 2005).   

 

 
Figure 2.1 Potential intensity diagrams indicating minimum sea-level pressure 

(mb) and maximum attainable wind speed (m/s). The images were 
created by the Center for Ocean-Land-Atmosphere Studies (COLA) 
using Emanuel’s PI theory.  The maps are based on data from the 
00UTC global operational analysis from the National Centers for 
Environmental Prediction (NCEP) for the date shown on the plot.  



9 

B. INTERNAL PROCESSES 

Internal storm processes (e.g., concentric eyewall cycles) also contribute 

to intensity fluctuations.  In some tropical systems, the result of these complex 

dynamic/thermodynamic interactions is the formation of multiple eyewalls.  

Willoughby et al. (1980) describe concentric convective rings as being most 

common in intense typhoons (winds greater than 130 kt), and their initial 

appearance usually marks the end of a strong intensification period. In the 

concentric eyewall process, a second (there are even cases of a third) eyewall 

forms well beyond the original radius of maximum winds.  It is important to note 

that concentric eyewalls are not observed in storms below typhoon strength.       

One question to be addressed in this thesis is whether available guidance 

can forecast a distinct eyewall replacement cycle.  The concentric eyewall cycle 

affects the intensity in a series of steps:  (i) a secondary eyewall begins to 

develop and an increase in wind speed is noted on the inward side of this newly-

developed (secondary) wind maximum; (ii) as the outer ring constricts around the 

existing eye, the convective rings begin to interact; (iii) the innermost eyewall 

weakens (intensity decreases) while the secondary (outer) eyewall contracts 

(rather symmetrically) toward the center; and (iv) the intensity increases again as 

the secondary eyewall radius shrinks.  Once the inner eye is completely gone, 

some reintensification is possible as the new eyewall contracts, often leading to a 

‘secondary peak’ in storm intensity.  While detection of multiple eyewall features 

has increased with improvements in satellite remote sensing (e.g., microwave 

imagery), forecasting the timing of intensity fluctuations remains tenuous.   

 
C. MIDLATITUDE INTERACTIONS 

Tropical cyclones also undergo dramatic intensity fluctuations due to 

complicated dynamic and thermodynamic interactions as the storm encroaches 

upon the midlatitudes (or when a midlatitude trough penetrates deep into the 

subtropics).  Klein et al. (2000) describe the extratropical transition (ET) of 

western North Pacific storms.  The authors also define two stages in the ET 

process:  (i) ‘transformation’ in which the weakening TC evolves into an 
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asymmetric baroclinic storm; and (ii) ‘reintensification’ in which the transformed 

storm deepens as an extratropical cyclone.  Such scenarios were observed in the 

2003/2004 western North Pacific tropical seasons, as the JTWC best track data 

abruptly ends for poleward-moving storms undergoing ET (and also for storms 

making landfall). 

The transformation stage begins as a poleward-moving TC interacts with a 

pre-existing baroclinic zone, which initiates an equatorward flow of colder, drier 

(midlatitude) air west of the storm center.  This flow of drier air effectively 

suppresses deep convection (on the west side), and a dry slot forms in the 

southwestern quadrant.  Conversely, poleward flow continues east of the storm 

center, advecting warm, moist air up isentropic surfaces within the pre-existing 

baroclinic zone.  Continued advection on the east and west sides of the TC leads 

to a southwest to northeast orientation of the baroclinic zone.  Descent in the 

western/southwestern portion of the storm compensates for the continued ascent 

east of the storm center.  Furthermore, increased vertical wind shear associated 

with the baroclinic zone removes the upper-tropospheric warm core downstream, 

and the upper-tropospheric outflow becomes confluent with the polar jet stream.  

With continued poleward motion, the weakened storm center encounters lower 

SSTs and begins to resemble a midlatitude cyclone.  In fact, Harr and Elsberry 

(2000) indicate warm frontogenesis north and east of the transformed storm 

center and weak cold frontogenesis south and west of the center.  Finally, 

transformation is complete once the storm becomes embedded within the 

baroclinic zone, with the surface storm center lying in the relatively cold, 

descending air.  It should also be noted that some storms never complete ET and 

continue to weaken while traversing lower SSTs (strong north-south SST 

gradient) and/or when encountering increased vertical wind shear. 

Reintensification is a complex interaction between the environment and 

the extratropical storm, whereby the central pressure of the reinvigorated system 

deepens, and in some cases becomes stronger (lower central pressure) than the 

original tropical cyclone.  Case studies by Harr et al. (2000) showed that these 

systems undergo the greatest deepening when they couple with a midlatitude 
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trough northwest of the circulation center (called a northwest pattern) via 

constructive fluxes of momentum and vorticity.  Another less vigorous 

intensification pattern occurs when the trough northwest of the extratropical 

storm remains relatively weak, and the system instead is advected northeast 

toward a stronger, nearly-stationary (occluded) extratropical system.  In this 

northeast pattern, the coupling between the midlatitude trough and the ex-TC is 

reduced, and the storm may or may not significantly intensify.  It should be noted 

that once the JTWC classifies a storm as ‘extratropical’ the storm intensity is no 

longer verified—despite what could be a very potent, reintensifying storm with 

near-typhoon-force winds, active seas, and intense rainfall rates.  The storm then 

becomes the responsibility of other regional/national forecast centers.   

 
D. OTHER FACTORS 

There are also many synoptic constraints on the different stages of TC 

intensity change.  The original SAFA rationale was that the track and intensity 

forecasting should be integrated (Carr and Elsberry 1994).  That is, the track 

affects intensity changes (e.g., over land, over SST gradients, and in different 

vertical wind shear regimes), and the TC intensity ultimately affects the depth of 

the steering layer.  In general, outer wind structure was assumed to not change 

much on the time scale of 72-h track forecasts, so that much of the SAFA focus 

was on the storm structure at the initial time. 

The effects of movement over land, different SST gradients, and vertical 

wind shear regimes are dependent on forecast track accuracy, which is 

especially true as a TC moves over land or just skirts a landmass.  In this 

example, an erroneous track forecast over land would yield a large intensity 

forecast error, and vice versa if the TC does move over land and the intensity 

forecast is based on an official track forecast that the TC will remain over the 

ocean.  Additionally, movement over lower SSTs will have a different effect on a 

weak TC than it does on an intense, mature TC.  This SST effect is also related 

to the effect of vertical wind shear on the TC intensity.  That is, the TC may be 

able to resist a larger amount of vertical wind shear if it remains over high SSTs, 
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but the combination of moving over lower SSTs and being exposed to increasing 

vertical shear (e.g., following recurvature) may lead to rapid decreases in wind 

speed.  Thus, the same amount of vertical wind shear when the TC is in the 

developing stage may have a different intensity change than when it is in the 

decaying stage.   
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III. METHODOLOGY 

A. FRAMEWORK FOR INTENSITY CHANGE ANALYSIS 

Consider the conceptual model of the TC life cycle in Figure 3.1 as a 

framework for intensity change analysis.  Tropical cyclones in the western North 

Pacific can form in different environmental conditions depending on the pre-TC 

seedling (e.g., monsoon depression or waves at the east end of the monsoon 

trough).  These pre-TC seedlings may exist for days without changing intensity 

until moving into a favorable environment and formation (e.g., defined at 25 kt or 

35 kt in Figure 3.1) occurs. The next critical stage in storm evolution following 

formation is intensification (Phase II in Fig. 3.1), where forecasters must decide 

the magnitude of intensity change and the duration of intensification.  During this 

Phase II, track direction and speed influence intensification; e.g., a slow track has 

a longer time to intensify over warm water.  The intensification in Phase II may 

also depend on the synoptic pattern/region and be quite different for a TC in the 

Standard/Tropical Easterlies from a TC in Poleward/Poleward Flow or 

Poleward/Equatorward Flow (see Carr and Elsberry 1994).  The next critical 

forecast decision is determining the maximum intensity that will be achieved, 

which again is a function of the track direction and speed since the TC needs a 

certain length of time to approach its MPI for a given SST and atmospheric 

profile.  In the simple conceptual model in Figure 3.1, a final critical forecast 

decision is determining the onset and magnitude of TC decay (Phase III).  As 

indicated in Chapter II D, this Phase III is critically dependent on the track over 

land or over decreasing SST and increasing vertical wind shear. 

The discussion of internal processes in Chapter II B, such as the eyewall 

replacement cycles, makes the conceptual model too simple.  Thus, a more 

general conceptual model of the life cycle is introduced in Figure 3.2, in which 

Phase IIa includes the possibility of one or more decay/intensification cycles.  

Therefore, the forecaster must consider whether the storm will have intensity 

fluctuations after reaching peak intensity. 
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Guidance for each of these critical forecast decisions may be examined 

using the framework of the idealized intensity profiles in Figures 3.1 and 3.2.  

That is, do the intensity forecast techniques provide accurate guidance during 

these stages in a typical life cycle:  (i) formation, defined here as a pre-TC 

seedling through tropical depression (TD) status; (ii) intensification, described as 

early intensification through tropical storm (TS) status and often followed by a 

period of more rapid intensification leading up to peak intensity; (iii) intensity 

fluctuations following peak intensity, often due to reintensification following an 

eyewall replacement cycle; and (iv) the primary period of decay, defined either as 

a steady decay following a single peak intensity (Figure 3.1), or the final storm 

decay following any decay/reintensification periods (Figure 3.2)?  This thesis 

primarily examines the intensity changes following TC formation, since this is 

when the magnitude of intensity changes is greatest.  Additionally, many of the 

intensity guidance techniques do not provide intensity guidance during the 

formation period, as the storm is often too weak for the models to capture this 

phase.   
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Peak Intensity

Phase III
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rapid typical rapidtypicalslow slowIntensity 
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Figure 3.1 Idealized intensity traces showing intensification and decay profiles 

following the formation phase (Phase I).  Phase II intensification 
may be described as slow (modest increase in intensity for a given 
time period), typical (an average rate of intensification for a given 
ocean basin and time period), or rapid (an above-average rate of 
intensification for a given time period).  Phase III may be described 
in a similar manner:  slow, typical, and rapid rates of decay. 
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Figure 3.2 Same as Fig. 3.1, except with the addition of Phase IIa to represent 

reintensification following an initial period of decay, especially 
during eyewall replacement cycles observed in intense TCs. 

 
B. DATA SOURCES 

The JTWC aids files, which include best track information and the various 

intensity forecasts, are the primary data sources for the 2003 and 2004 intensity 

forecast evaluations.  These files are part of the Automated Tropical Cyclone 

Forecasting System (ATCF) developed by the Naval Research Laboratory, 

Monterey, CA.  Additional storm-specific information was gleaned from the JTWC 

2003/2004 Annual Tropical Cyclone Report (ATCR) and 2003 and 2004 North 

Pacific TC Summaries (courtesy of Gary Padgett at tropical-storms-

admin@tstorms.org).  Ancillary storm details were derived from the ‘Digital 

Typhoon’ web-based resource of the Japan Meteorological Agency (JMA) 

[Available at http://agora.ex.nii.ac.jp/digital-typhoon/ (Current as of 15 Feb 05)]. 

 
C. FRAMEWORK APPLIED TO THE 2003 AND 2004 SEASONS 

A total of 59 storms (see storm summaries for the 2003 and 2004 seasons 

in Tables 3.1 and 3.2) were used to apply the framework for intensity analysis.  

First, ‘storm duration’ is defined as the number of days a storm existed from initial 
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formation (Phase I) through final decay (Phase III); e.g., between the first best 

track intensity report and the last best track intensity report in the JTWC 

warnings.  The durations of the storms were grouped into three classes:  (i) 

short-lived storm (lasting six days or less); (ii) an averaged-lived storm (lasting 

greater than six days to 12 days); (iii) or a long-lived storm (lasting greater than 

12 days).  These categories were defined using natural breaks in the distribution 

of storm duration (Fig. 3.3).   
TC Name Month Warning Duration Est. Max. SFC Formation Formation Track

(days) Wind (kt) Belt (LAT) Belt (LON)
TS 01W YanYan Jan 10.25 50 5N to 9N East of 145E Recurve

STY 02W Kujira Apr 17.25 135 0 to 4N East of 145E Recurve
TD 03W May 3.5 30 5N to 9N 120E to 145E Erratic N
TY 04W Chan-hom May 9.25 115 5N to 9N East of 145E Recurve
TS 05W Linfa May 6.5 60 15N to 19N West of 120E NE
TS 06W Nangka May-Jun 4 50 15N to 19N West of 120E NE
TY 07W Soudelor Jun 13 115 5N to 9N 120E to 145E Recurve
TY 08W Koni Jul 8.25 65 10N to 14N 120E to 145E WNW-NW

STY 09W Imbudo Jul 9.5 130 5N to 9N East of 145E NW
TY 10W Morakot Aug 5.25 65 15N to 19N 120E to 145E NW
TY 11W Etau Aug 9.5 110 10N to 14N 120E to 145E Recurve
TY 12W Krovanh Aug 12.25 90 5N to 9N East of 145E NW-W
TS 13W Vamco Aug 1.5 35 15N to 19N 120E to 145E N-NW
TY 14W Dujuan Aug-Sep 8 125 15N to 19N 120E to 145E SW-WNW

STY 15W Maemi Sep 10 150 10N to 14N 120E to 145E Recurve
TY 16W Choi-Wan Sep 5.5 95 10N to 14N 120E to 145E Recurve
TY 17W Koppu Sep 8 90 15N to 19N 120E to 145E Recurve
TD 18W Oct 4.5 25 15N to 19N West of 120E Erratic NW
TD 19W Oct 3.5 30 25N to 29N 120E to 145E NE
TY 20W Ketsana Oct 9.5 125 15N to 19N 120E to 145E NE

STY 21W Parma Oct 13.25 130 15N to 19N 120E to 145E C.W. Loop
TD 22W Oct 2.75 25 10N to 14N West of 120E E
TS 23W Oct 6.75 35 10N to 14N West of 120E WNW
TY 24W Melor Oct-Nov 6.25 70 10N to 14N West of 120E Recurve
TY 25W Nepartak Nov 8.25 75 10N to 14N 120E to 145E W-NW

STY 26W Lupit Nov-Dec 16.5 145 5N to 9N East of 145E Recurve
TS 27W Dec 6 35 10N to 14N 120E to 145E W-SW  

 
Table 3.1 Storm information adapted from the JTWC Annual Tropical Cyclone 

Report (ATCR) 2003.  Storm names were designated by the 
Regional Specialized Meteorological Center (RSMC), Tokyo, or by 
the Central Pacific Hurricane Center (CPHC), Honolulu.  The JTWC 
provided warnings for 27 tropical cyclones during the 2003 season:  
four tropical depressions; six tropical storms; and 17 typhoons (five 
super typhoons with estimated sustained surface wind speed equal 
to or exceeding 130 kt).   
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TC Name Month Warning Duration Est. Max. SFC Formation Formation Track
(days) Wind (kt) Belt (LAT) Belt (LON)

 TS 01W Feb 10.5 45 10N to 14N 120E to 145E C.C.W. Loop
TS 02W Mar 9.75 45 5N to 9N 120E to 145E NW

STY 03W Sudal Apr 15 130 5N to 9N East of 145E Recurve
STY 04W Nida May 8.25 140 5N to 9N 120E to 145E Recurve
TS 05W May 7.75 35 5N to 9N West of 120E Short Erratic 
TY 06W Omais May 8.25 65 5N to 9N 120E to 145E WNW - NE
TY 07W Conson Jun 13 85 15N to 19N West of 120E NE
TY 08W Chanthu Jun 8.25 75 10N to 14N West of 120E WNW

STY 09W Dianmu Jun 10.25 150 5N to 9N 120E to 145E Recurve
TY 10W Mindulle Jun-Jul 14.5 125 15N to 19N 120E to 145E Recurve
TY 11W Tingting Jun-Jul 11.5 80 10N to 14N East of 145E Recurve
TS 12W Kompasu Jul 6 45 20N to 24N 120E to 145E W
TY 13W Namtheun Jul-Aug 8.5 115 20N to 24N East of 145E NW - WNW
TY 14W Meranti Aug 5.75 90 20N to 24N East of 145E NE - N
TD 15W Malou Aug 5 30 30N to 34N 120E to 145E NW - N
TY 16W Rananim Aug 3.5 90 15N to 19N 120E to 145E N - NW
TS 17W Malakas Aug 2.25 35 25N to 29N East of 145E NE
TY 18W Megi Aug 7.25 65 15N to 19N 120E to 145E Recurve

STY 19W Chaba Aug 14.25 155 10N to 14N East of 145E Recurve
TY 20W Aere Aug-Sep 13.5 65 10N to 14N 120E to 145E NW - WSW
TS 21W Aug 4.25 35 15N to 19N East of 145E WNW

STY 22W Songda Aug-Sep 12.75 130 10N to 14N East of 145E Recurve
TS 23W Sarika Sep 4.5 60 15N to 19N East of 145E WNW - N
TD 24W Haima Sep 3.5 30 20N to 24N 120E to 145E NNE - NW
TY 25W Meari Sep 12 120 10N to 14N 120E to 145E Recurve

STY 26W Ma-on Oct 11.75 140 15N to 19N 120E to 145E Recurve
TY 27W Tokage Oct 11 120 10N to 14N East of 145E Recurve
TY 28W Nock-ten Oct 10 110 10N to 14N East of 145E WSW - NW
TY 29W Muifa Nov 13.75 85 10N to 14N 120E to 145E NW - SW
TY 30W Nanmadol Nov-Dec 5.75 125 5N to 9N East of 145E NW
TS 31W Talas Dec 11 40 5N to 9N East of 145E W - NNW
TS 32W Noru Dec 5 55 10N to 14N East of 145E Recurve  

 
Table 3.2 Same as Table 3.1, except for the 2004 western North Pacific 

tropical season.  A total of 32 tropical cyclones occurred during 
2004: two tropical depressions; nine tropical storms; and 21 
typhoons (six super typhoons).   
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Figure 3.3 Combined 2003/2004 storm durations (life spans). 

 
A summary of storm durations for the 2003 and 2004 seasons breaks 

down as follows:  19 of 59 storms were short lived; 28 of 59 storms were 

averaged lived; and 12 of 59 total were long lived.  It is likely that the short-lived 

storms will have a life cycle similar to Figure 3.1, and average-lived (or especially 

long-lived) storms are more likely to have a life cycle similar to Figure 3.2 with a 

decay and re-intensification cycle. 

• The 19 short-lived TCs included six tropical depressions, eight 
tropical storms, and five typhoons ; 

• The 28 averaged-lived TCs included zero tropical depressions, 
seven tropical storms, and 21 typhoons (five super typhoons); 

• The 12 long-lived TCs were all typhoons (with 6 of the 12 typhoons 
reaching super typhoon status). 

While storm duration is simply the total number of Phase I through Phase 

III days, ‘phase duration’ is defined as the total number of days a particular storm 

spends in each phase of the intensity framework (Phases I, II, or III in Figures 3.1 

and 3.2).  Therefore, Phase I duration is defined as the total time the storm 

spends in the formation phase until surpassing 34 kt (the tropical storm 
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threshold).  Phase II duration (and Phase II-a) is defined as the total time the 

storm spends intensifying until reaching peak intensity (or a secondary peak in 

intensity).  Finally, Phase III duration is defined as the total time the storm spends 

in the primary decay phase (not including Phase II-a intensity fluctuations).  The 

combined 2003 and 2004 phase duration averages follow: 

• Short-lived storms:  Phase I (2.5 days); Phase II (1.5 days); Phase 
III (0.75 days). 

• Average-lived storms:  Phase I (3.0 days); Phase II (3.5 days); 
Phase III (3.0 days). 

• Long-lived storms:  Phase I (4.25 days); Phase II (7.0 days); Phase 
III (3.25 days). 

Note that a pre-TC seedling may exist in Phase I for 2.5-4.25 days on 

average before achieving TS status.  During this Phase I, the intensity guidance 

should be predicting near-constant intensity or modest intensification.  Once into 

the intensification (Phase II) the short-lived storms have a shorter period to reach 

maximum intensity than do longer-lived storms.  Likewise, the decay period 

(Phase III) is much shorter for the short-lived storms than for average-lived and 

long-lived storms.  Also note that the longer-lived storms spend more time in 

each of the three phases than the shorter-lived storms. 

If one were to combine these phase duration averages with intensity 

information, an expected rate of intensification or decay could be calculated.  For 

example, maximum storm intensity averaged for the 59 storms during the 2003 

and 2004 seasons was about 85 kt (rounded to the nearest five knots).  This 

intensity average may also be examined as intensity averages for short-lived 

storms (50 kt), average-lived storms (90 kt), and long-lived storms (115 kt).  

Therefore, if one were to apply these intensity averages to the Phase II durations 

of short-, average-, and long-lived storms, one could reasonably expect the 

following intensification rates: 

• Short-lived storms:  10 kt/day; 

• Average-lived storms:  15 kt/day; 

• Long-lived storms:  20 kt/day. 
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The same procedure may be applied for decay, with the exception of 

choosing a 45 kt decay threshold (since the best track data may not continue 

decay past 45 kt for many storms due to ET or landfall).  Therefore, if one were 

to apply these intensity averages to the Phase III durations of short-, average-, 

and long-lived storms, one could reasonably expect the following decay rates: 

• Short-lived storms:  5-10 kt/day; 

• Average-lived storms:  15 kt/day; 

• Long-lived storms:  20-25 kt/day. 
While these simple evaluations may miss periods of slower or more rapid 

rates in a particular intensification/decay cycle, it provides a ‘first-guess’ for 

comparison with the available intensity change guidance.  These calculated 

(average) intensification rates fall within the observed intensification rates of 

many of the intensity guidance techniques.  The characterizations of the 

intensification/decay rates (i.e., rapid, typical, and slow) will be established from 

comparisons between the different model intensity change forecasts and the 

actual rates of intensification/decay. 

Thus, the intensity framework in Figure 3.1 and 3.2 can be useful in 

distinguishing the intensity characteristics of different storms.  Suppose the 

forecaster can determine from the formation location and expected track that the 

pre-TC seedling will at most be a short-lived storm.  Then the expected 

intensification rate during Phase II, maximum intensity to be achieved, and decay 

rate during Phase III are going to differ from the average-lived storm.  Likewise, if 

the formation is deep in the tropics and a long path in favorable conditions is 

expected, the storm is more likely to approach the PI, more likely to have at least 

one decay/reintensification cycle (Phase IIa), and to have a longer primary decay 

period (Phase III) than the short-lived storm. 

D. SELECTED INTENSITY GUIDANCE TECHNIQUES 

Since this thesis focuses on evaluations of intensity guidance accuracy, 

some basic knowledge of the various intensity guidance techniques is necessary.  

Moreover, the performance of these techniques will be evaluated during each 
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phase of the intensity framework described above.  The current pool of readily 

available, operational TC intensity guidance techniques for the western North 

Pacific exceeds 10 techniques (Appendix A).  Although a comprehensive 

comparison of all operational intensity guidance is beyond the scope of this 

thesis, three primary intensity guidance techniques are considered:  statistical, 

statistical-dynamical, and dynamic.  Each of the three types of techniques offers 

different approaches to TC intensity forecasting:  each technique requires a 

different design; each technique utilizes a different set of initial conditions; each 

technique utilizes a distinct set of predictive equations; and thus each technique 

is expected to have unique model characteristics.  These differences often lead 

to diverging intensity predictions and sometimes large deviations from the 

observed storm intensity. 

This thesis evaluates the performance from six of the techniques for the 

western North Pacific tropical cyclone seasons of 2003 and 2004:  Statistical 5-

Day Typhoon Intensity Forecast—5-day Model (ST5D); Statistical Typhoon 

Intensity Prediction Scheme (STIP); Geophysical Fluid Dynamics Model–Navy 

(interpolated) (GFNI); Air Force Weather Agency Mesoscale Meteorological 

Model-5 (interpolated) (AFWI); Coupled Hurricane–Ocean Intensity Prediction 

System (CHIP); and Japan Typhoon Model (interpolated) (JTYI).  Official 

intensity forecasts (JTWC) are also evaluated for comparison.   

First, the ST5D represents a statistical intensity forecasting approach that 

requires only climatological data and the present intensity, recent intensity 

change, and a few storm variables to predict future TC intensity (see Appendix B 

for details).  The STIP combines elements of the ST5D statistical approach with 

dynamically-produced model fields, and thus may be characterized as a 

statistical-dynamical model for TC intensity forecasting (see Appendix C for 

details).  The CHIP provides an example of a relatively simple dynamic TC 

intensity prediction model because it moves an axisymmetric TC model over a 

one-dimensional ocean mixed-layer model (see Appendix D for details).  Thus, 

the CHIP model combines the current hurricane/ocean storm environment and 

predicts future intensity changes along the official forecast track.  Three 
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sophisticated, full physics models that provide track and intensity guidance are 

also considered:  GFNI (see Appendix E for details); AFWI (see Appendix F for 

details); and JTYI (see Appendix G for details).   

Note that the interpolated versions of the three full physics models are 

used.  These interpolated techniques were chosen due to operational 

considerations, as the interpolated output is available prior to the end of the 

model computational cycle.  Therefore, if forecasters wish to maximize the 

number of available intensity guidance techniques, the interpolated output must 

be used.  In contrast, processing time for the ST5D, STIP, and CHIP techniques 

is rather short, and intensity change guidance is available to forecasters in a 

fraction of the time required to generate output from the full-physics techniques.   



23 

IV. RESULTS 

A. BASIC STATISTICS  

The conventional analysis of intensity forecasts is to calculate a simple 

average of the (forecast – observed) intensity bias (positive is an over forecast) 

and an average of the absolute value of the (forecast – observed) intensity 

difference.  The latter metric is then a typical magnitude of error, with no special 

penalty for larger errors as is implicit in a root mean square error in which the 

errors are first squared before averaging.  In the following discussion, these will 

be referred to as average intensity errors.  In each of the inter-comparisons of the 

intensity techniques, a homogeneous sample is used (i.e., exactly the same 

forecasts are being compared, which is necessary because some techniques are 

not available every time and some forecasts are easier than others are.  The lone 

exception to the homogeneous evaluation is the JTYI model.  This model 

required a separate basic statistical analysis, and the results were later combined 

with the homogeneous data set for comparison. 

1. Average Bias and Error Results for 2003 
If the technique had as many over-forecasts as under-forecasts, the bias 

of the intensity forecasts should be near zero in a large sample.  While this bias 

was near zero at time zero for all of the techniques except CHIP, the biases 

generally increased with each forecast interval (Fig 4.1).  The tendency for CHIP 

is to have an increasingly large negative bias (under-forecasting intensity) during 

2003, with a 72-h bias of –38 kt.  The climatology and persistence technique 

ST5D had a negative bias of about –13 kt at 72 h, which suggests the 2003 

cyclone sample did not have a similar intensity change distribution as for the 

developmental sample on which ST5D is based.  Surprisingly, the statistical-

dynamical technique STIP had an even larger negative bias (~ -25 kt) at 72 h.  

Whereas the STIP includes the ST5D predictors, which may account for some of 

the bias, one would expect the other predictors in STIP to have reduced the bias.  

The dynamical models had smaller biases, with the GFNI and AFWI models 

being positive (tendency to over-forecast intensity) and the JTYI being negative. 
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Figure 4.1 Bias of the intensity forecasts by six techniques (see box for colors) 
at analysis time (time = 0) and at 12, 24, 36, 48, and 72 h during 
the 2003 season.  Numbers along the top of the graph represent 
the sample sizes of homogeneous cases.  Note the * indicates that 
the JTYI is a non-homogenous member used for comparison. 

 
Note that the average magnitude of intensity error (Fig. 4.2) during the 

2003 season includes the bias error and the random error.  The average error 

increased with each forecast interval for all techniques, with the largest errors 

being associated with the AFWI and the CHIP models.  This large error for CHIP 

is not surprising given the large bias displayed in Fig. 4.1.  Since the bias-error 

for the AFWI model was small, a large average intensity error means both large 

under-forecasts and large over-forecasts are included.  The ST5D is considered 

to be a minimal skill metric since it requires no special meteorological knowledge.  

By this metric, none of the five other techniques had any skill relative to ST5D 

during the 2003 season.  Thus, the JTWC had little skillful guidance on average 

from these techniques.  
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Figure 4.2 Average magnitude of the intensity forecast errors (kt) for six 

techniques at analysis time (time = 0) and at 12, 24, 36, 48, and 72 
h during the 2003 season.  Numbers along the top of the graph 
represent the sample sizes of homogeneous cases.  Note the * 
indicates that the JTYI is a non-homogenous member used for 
comparison. 

 
2. Average Bias and Error Results for 2004 
The conventional bias analysis was repeated for the 2004 season (Fig. 

4.3).  Once again, the bias at zero hour was near zero with the exception of 

CHIP.  The magnitude of the ST5D bias decreased slightly between 36 and 72 h 

and was of opposite sign from the 2003 season (from negative to slightly 

positive).  The magnitude of CHIP biases was dramatically smaller at all forecast 

intervals during 2004 compared to 2003.  This reduction was especially evident 

at the 72 h forecast interval, where the magnitude of the average bias decreased 

by 30 kt (from ~-38 kt in 2003 to ~-8 kt in 2004).  Unlike 2003, when all of the 

techniques tended to have increasingly larger bias at longer forecast intervals, an 

increasing bias with longer forecast intervals was only evident in three of the 

models during 2004.  First, the statistical-dynamical STIP had an increasingly 

negative bias with each forecast interval past 12 h.  However, the magnitude of 
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the bias was smaller between 24 and 72 h when compared to the 2003 season.  

On the other hand, the GFNI and AFWI techniques had positive biases greater 

than the positive biases during 2003.  Finally, the JTYI remained the technique 

with the smallest bias at nearly every forecast interval, which indicates a near-

equal amount of over-forecasts and under-forecasts. 
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Figure 4.3 Bias of the intensity forecasts as in Fig. 4.1, except for the 2004 

season.  Numbers along the top of the graph represent the sample 
sizes of homogeneous cases.  Note the * indicates that the JTYI is 
a non-homogenous member used for comparison. 

 
As during 2003, the average intensity error during 2004 increased with 

each forecast interval for all techniques, with the largest errors beyond 24 h 

being associated with the AFWI and JTYI models (Fig. 4.4).  The magnitude of 

intensity error associated with the STIP and GFNI models changed little from the 

previous season.  While the CHIP model had very large errors during 2003, the 

magnitude of those errors dropped significantly during 2004.  In fact, the CHIP 

model had the smallest intensity errors at 48 h and 72 h during 2004.  Overall, 

the minimal skill ST5D had the smallest average intensity errors with the 

exception of CHIP at 48 and 72 h.  That is, the only technique to add skill relative 
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to ST5D during the 2004 season was CHIP.  Once again, the JTWC had little 

skillful guidance on average from these techniques.  
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Figure 4.4 Average magnitude of the intensity forecast errors as in Fig. 4.2, 

except for the 2004 season.  Numbers along the top of the graph 
represent the sample sizes of homogeneous cases.  Note the * 
indicates that the JTYI is a non-homogenous member used for 
comparison. 

 
B. PERFORMANCE DURING FORMATION PHASE 

Recall from the intensity framework that the formation phase is a period of 

storm organization when anticipated intensification rates are rather slow (~10 

kt/day or less).  After all, the formation stage (as applied to this thesis) only lasts 

until the storm surpasses the 34-kt point, so there is not much opportunity for 

dramatic intensity increases.  In fact, there were many occurrences when one (or 

more) of the intensity guidance techniques failed to produce intensity forecasts 

during Phase I.  As a result, empirical evaluations of Phase I model performance 

proved difficult.  Therefore, an objective evaluation tool was used to assess 

intensity guidance accuracy.  Note that this same approach can be applied to all 

phases in the conceptual intensity framework. 
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A simple test of the usefulness of an intensity guidance technique is 

whether it at least indicates the intensity tendency over the forecast interval:  

increasing (> 10 kt); remaining nearly constant (+10 kt to -10 kt); or decaying (> -

10 kt).  These tendencies can be displayed in a contingency table as in Fig. 4.5, 

where the Good (G) cases are along the diagonal.  With this procedure in mind, 

the intensity trend analyses can be calculated for all forecast intervals in the 

different phases of the intensity framework (Phase I to Phase III).  That is, each 

analysis revealed how well a particular intensity prediction technique could 

forecast intensity change trends throughout the storm life cycle.  Whereas a 

technique may have a Good (G) intensity trend performance (on average), it will 

still have cases of poor performance and the challenge is to determine when and 

why the guidance will be poor. 

                                                Forecast 

                                        -10 kt          +10 kt 

 

 
              -10 kt 
 
Observed 
 
             +10 kt 
 
 
 
 

Figure 4.5 Sample contingency table with Good (G) intensity trend forecasts 
along the diagonal.  A Good forecast was tallied if the observed 
intensity change fell within +/- 10 kt of the observed intensity 
verifying at each 12-h forecast interval; an Under (U) trend 
represents forecast decay greater than 10 kt, but the decay trend 
was not observed; an Over (O) forecast represents forecast 
intensification greater than 10 kt, but the intensification trend was 
not observed.   

 
1. Good (G) Intensity Trends During Phase I 
The first trend analysis (Fig. 4.6) examined model performance during the 

storm formation stage.  All of the intensity techniques have a high percentage of 

GoodUnderUnder

OverGoodUnder

OverOverGood

GoodUnderUnder

OverGoodUnder

OverOverGood
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G intensity trends (80% or greater) for the 12-h forecast point.  If the ST5D is 

used as a skill measure, none of the intensity techniques or JTWC has skill in 

this 12-h intensity trend test.  However, the percentages of G intensity forecasts 

decreased dramatically by 24 h (~60% or less), and again none of the techniques 

or JTWC had skill relative to the ST5D.  The STIP technique had the largest 

percentage of G intensity trend forecasts between 36 and 60 h, and was equal to 

the percentage for the JTYI at 72 h.  Not many of the techniques besides ST5D 

and STIP provide 84-h and longer-range forecasts.  For those forecasts that can 

be verified, the percentages of good forecasts are about 90%.  

While the JTYI performance was relatively high (above 70%) at 60, 72, 

and 84 h, this technique generated only 40% G intensity trends at the 36-h point.  

In fact, intensity trend guidance from the JTYI was also poor at 24 and 48 h, as 

nearly one-half of all forecasts provided erroneous intensity change guidance 

during formation.  The same assessment holds for the GFNI technique at 72 and 

84 h, when over one-half of all forecasts generated poor guidance.  If only 50% 

of the intensity technique predictions are not properly predicting the sense of the 

intensity trend to within 10 kt, then this is not useful guidance.  

2. Under (U) Intensity Trends During Phase I 
The percentage of U intensity trends generally increased between 12 and 

36 h for all of the techniques (Fig. 4.7).  This increase was especially evident in 

the JTYI and to a lesser extent in the GFNI, AFWI, and CHIP techniques.  These 

rather significant U percentages indicate that these techniques may predict zero 

intensity changes or decreases even though the storm is intensifying during 

Phase I.  Conversely, the relatively low percentages of under-forecasts by the 

ST5D and STIP techniques, except for the 24 h forecast interval, indicate that 

these techniques rarely produce under-forecasts of intensity change during 

formation (e.g., almost exclusively generate forecasts of intensification when the 

storm is still weak).  In Figure 4.7, the measure of skill is that the techniques or 

JTWC should have smaller percentages of U forecasts than ST5D.  Thus the 

skillful forecasts are:  12 h, GFNI and AFWI; 24 h through 48 h, STIP and JTWC; 

and 72 h through 120 h, none.  As in the Phase I Good intensity trends above, 
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the sample sizes of forecasts verifying beyond 84 h drop considerably, which 

results in higher-than-expected U intensity trend percentages between 96 and 

120 h.  Given the small skill (too many U forecasts) by the various techniques, 

not much useful guidance for formation is available. 
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Figure 4.6 Percentage of Good intensity trends as defined in Figure 4.5 during 
storm formation (Phase I) for the combined 2003 and 2004 
seasons.  Sample sizes of the verified forecasts range from over 
400 at 12 h to less than 30 by the 96-h point.  A Good forecast 
during formation indicates that the magnitude of the forecast 
intensification rate is within +/- 10 kt of the actual intensification 
rate. 
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Figure 4.7 Percentage of Under intensity trends as defined in Figure 4.5 
during storm formation for the combined 2003 and 2004 seasons.  
Sample sizes of the verified forecasts range from over 400 at 12 h 
to less than 30 by the 96-h point.  An Under forecast during 
formation indicates that the magnitude of the forecast intensification 
rate is less than the magnitude of the actual intensification rate. 
 

3. Over (O) Intensity Trends During Phase I 
In general, the percentages of the Over intensity trend forecasts (Fig. 4.8) 

during Phase I are smaller than for the Under intensity trend forecasts.  All of the 

techniques and JTWC have very small percentages of O forecasts at 12 h.  

Again using ST5D as the skill measure, the skillful forecasts at 24 h are GFNI, 

CHIP, and JTYI.  Compared to ST5D, the STIP has about twice as many 24-h 

forecasts that over-intensify the storms during Phase I.  Both STIP and JTWC 

tend to over-intensify the storms at 36 h.  By 48 h, all of the other intensity 

techniques have more skill than ST5D, and the JTWC continues to over-intensify 

storms in the formation stage.  After 48 h, all of the techniques and JTWC have 

skill relative to ST5D in not over-predicting the intensity trends during formation.  
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This skill relative to ST5D arises because the ST5D will tend to predict an 

intensification (formation) too large of a fraction of the time based on climatology.   
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Figure 4.8 Percentage of Over intensity trends as defined in Figure 4.5 during 
storm formation for the combined 2003 and 2004 seasons.  Sample 
sizes of the verified forecasts range from over 400 at 12 h to less 
than 30 by the 96-h point.  An over-forecast during formation 
indicates that the magnitude of the forecast intensification rate 
exceeds the magnitude of the actual intensification rate. 
 

4. Phase I Intensity Trend Summary 
Overall, the ST5D and STIP intensity guidance techniques provided the 

most reliable intensity change trends during Phase I.  Both of these techniques 

generated about 75% G intensity trends averaged over all forecast intervals.  The 

JTWC also had a high G intensity trend percentage (~75%) when averaged over 

all forecast intervals.  This similarity suggests that JTWC follows their best 

guidance, but because that best guidance is most frequently the ST5D during 

Phase I, the value-added or skill is small.  The GFNI, AFWI, CHIP, and JTYI 

generally had much lower G percentages between 24 and 48 h, as each 

technique erred toward an under-forecast of intensity change during formation. 



33 

The performance of the official forecasts was also the lowest between 24 and 36 

h, when there was a tendency to over-forecast intensification rates.   

One possible explanation for this trend in errors during Phase I is based 

on the average durations for short-lived, average-lived, and long-lived storms that 

range from 2.5 to 4.25 days (see Chapter III C).  That is, the pre-tropical cyclone 

seedling will have existed about this length of time before it intensified.  The 

various techniques and JTWC forecasters must then predict the timing of this 

duration before intensification begins.  The lowest Good and highest Over 

intensity change percentages for the 24-h to 48-h forecasts during Phase I 

suggests that this is the average duration in Phase I before intensification begins.  

Therefore, one can conclude that this period is longer than the other techniques 

and JTWC predictions; i.e., they tend to predict formation in the 24-48 h period, 

which is too soon.  Thus, better understanding and forecast techniques for 

predicting formation is needed.   

 
C. PERFORMANCE DURING INTENSIFICATION PHASE 

Whereas intensity guidance was not always available during the formation 

phase, output from the six techniques was consistently available during the 

intensification phase.  With the larger number of intensity forecasts, several 

evaluations of Phase II model performance were possible.  These evaluations 

were performed in conjunction with objective analyses to determine qualitatively 

and quantitatively the intensity forecast trend success during Phase II. 

1. Ability to Forecast Phase II Intensity Trends 
Referring to the intensity framework (Figures 3.1 and 3.2), any forecast 

from the time the TC was at or above 35 kt until the time of the first peak intensity 

was evaluated.  All forecast intervals to 120 h were included, so the verification 

time for the longer forecasts could be in Phase IIa or Phase III.  Recall from Fig. 

4.5 that the metric was whether the intensity trend of +/- 10 kt over the forecast 

interval was Good, Under, or Over. 
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a. Good (G) Intensity Trends During Phase II 
For all 12-h forecasts during the time the storm was in Phase II 

(Fig. 4.9), the ST5D, STIP, and AFWI techniques had percentages of Good (G) 

approaching 70%, which indicates that these techniques provide intensity change 

guidance within +/- 10 kt in about 7 of 10 cases.  For the 24 h to 84 h forecast 

intervals, the statistical-dynamical technique STIP had the highest percentage of 

G forecasts, and this was followed by the ST5D model at 24, 60, 72, and 84 h.  

Therefore, the STIP-generated forecasts often had some small skill relative to the 

ST5D during the storm intensification phase.  At 36 and 48 h, forecasts produced 

by the GFNI had the second-highest (out of six techniques) percentage of G 

trend forecasts, with ~61% and ~64% respectively.  Additionally, the GFNI-

generated forecasts had the third-highest percentage of G intensity trends at 24, 

60, 72, and 84 h. 

While the AFWI percentage of Good (G) forecasts from Phase II 

initial conditions was high at 12 h, the percentage decreased dramatically by 24 h 

(~44%), probably because of a nearly-steady forecast tendency (systematic 

error) after initialization.  In fact, the AFWI model demonstrated the least success 

at forecasting intensity trends while the storm was in Phase II, as it had the 

lowest percentage of G intensity trend forecasts between 24 and 72 h.  The 

percentage of G intensity trends from the JTYI techniques remained near 50% at 

most forecast intervals.  This indicates that nearly one-half of JTYI forecasts 

produce erroneous intensity change guidance during the intensification phase. 

Finally, the JTWC had the highest G intensity trend percentage at 

all forecast intervals for Phase II.  Thus, the official intensity change forecasts 

added some value to guidance produced by the ST5D or STIP.  However, the 

JTWC percentages of G intensity trend forecasts are only slightly higher than the 

percentages observed for ST5D and STIP (at all forecast intervals).  These 

similar percentages again indicate that the JTWC relies on those two techniques 

as their primary guidance for intensity changes during Phase II, but the added 

value or skill is small. 
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Figure 4.9 Percentage of Good intensity trends as defined in Fig. 4.5 during 
intensification for the combined 2003 and 2004 seasons.  Sample 
sizes of the verified forecasts range from over 600 at 12 h to less 
than 200 by the 96-h point.  A Good forecast during intensification 
indicates that the magnitude of the forecast intensification rate is 
within +/- 10 kt of the actual intensification rate. 

 
b. Under (U) Intensity Trends During Phase II 
The percentages of under-forecast intensity trends during Phase II 

(Fig. 4.10) all exceed 20% for 12-h forecasts.  Then the AFWI, CHIP, and JTYI U 

intensity trends all exceeded 30% at 24 and 36 h, which means that nearly one-

third of the intensity change guidance generated by these techniques yielded an 

under-forecast of intensification.  That is, the actual rate of intensification 

exceeds the predicted rate of intensification by 10 kt or more.  This relatively high 

percentage of JTYI and AFWI under-forecasts is often the result of ‘flat’ intensity 

change forecasts.  Indeed, the AFWI and JTYI often forecast slow intensification 

rates out to 24 h, and maintain a nearly-constant intensity forecast from 24 to 48 

h.  Therefore, the AFWI and JTYI intensity change forecasts are often below the 

actual intensity change (‘undershooting’) by the 24-h point (although such a flat 
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intensity forecast may coincidentally approach the actual intensity value later in 

the forecast period as the storm begins to decay).   

The STIP produced the lowest percentage of U intensity trends at 

nearly every forecast interval.  This was especially evident between 36 and 120 

h, when the U percentage remained near 10%.  Thus, the STIP rarely generated 

under-forecasts during storm intensification, and definitely had skill relative to the 

ST5D in predicting intensity change during Phase II.  The GFNI model also 

produced rather low percentages of U intensity trends that usually remained 

between 15 and 25%, and had skill relative to the ST5D between 24 h and 60 h.  

The magnitude of the JTWC under-forecast intensity trends nearly matched the 

lowest U percentages produced by the STIP technique, which again suggests the 

reliance that JTWC places on this technique for guidance on intensity changes 

while the storm is in Phase II. 
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Figure 4.10 Percentage of Under intensity trends as defined in Fig. 4.5 during 
intensification for the combined 2003 and 2004 seasons.  Sample 
sizes of the verified forecasts range from over 600 at 12 h to less 
than 200 by the 96-h point.  An under-forecast during intensification 
indicates that the magnitude of the forecast intensification rate is 
less than the magnitude of the actual intensification rate. 
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c. Over (O) Intensity Trends During Phase II 
Since the Good, Under, and Over percentages must sum to 100, 

these Over (O) intensity change percentages are the remaining portion of the 

forecasts.  While the AFWI, CHIP, and JTYI techniques generated rather high 

percentages (> 30% at 24 and 36 h) of under-forecast intensity trends, none of 

the techniques produced over-forecasts greater than 30% of the time.  In fact, 

only the AFWI had the 30% O value at 60 and 72 h.  Otherwise, the over-forecast 

percentages from all of the remaining techniques never exceeded ~22%.  That is, 

less than one-in-four intensity change forecasts were over-forecasts of intensity 

during Phase II.  In fact, the intensity change guidance at many forecast intervals 

only generated O intensity trends ~15% of the time.  Using ST5D as a skill 

measure (smaller percentages of U forecasts):  12 h, STIP, AFWI, JTYI, and 

JTWC had skill; 24 h-36 h, CHIP and JTYI; 48 h and 72 h:  CHIP; and after 72 h 

none of the techniques had skill relative to ST5D. 
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Figure 4.11 Percentage of Over intensity trends as defined in Fig. 4.5 during 
intensification for the combined 2003 and 2004 seasons.  Sample 
sizes of the verified forecasts range from over 600 at 12 h to less 
than 200 by the 96-h point.  An over-forecast during intensification 
indicates that the magnitude of the forecast intensification rate is 
greater than the magnitude of the actual intensification rate. 
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d. Phase II Intensity Trend Summary 
This evaluation of the capability of the various techniques to predict 

intensity trends according to the categories in Fig. 4.5 indicated that the 

statistical-dynamical STIP, followed by the statistical ST5D and the GFNI, 

produced the most reliable intensity change guidance during the intensification 

phase.  Indeed, the STIP had G intensity trends 68.5% of the time when 

averaged over all of the forecast intervals.  Additionally, nearly two-thirds of all 

ST5D and GFNI forecasts had G intensity trends when averaged over all of the 

forecast intervals.  With few exceptions, the three remaining dynamic techniques 

(AFWI, CHIP, and JTYI) demonstrated no skill relative to the STIP or ST5D.  In 

fact, the AFWI had the lowest G intensity trend percentage relative to all of the 

intensity guidance techniques during intensification.  Conversely, the JTWC 

forecasts outperformed guidance from every technique, as nearly three-quarters 

of the official forecasts produced G intensity change trends. 

2. Errors Verifying at Peak Intensity 
While the above intensity trend analysis indicated general technique 

performance during Phase II, it is also of interest whether the techniques are 

capable of predicting the peak intensity at the end of Phase II.  Therefore, 

average intensity errors for the various techniques for the forecasts preceding the 

time of maximum intensity were computed to quantify intensity guidance 

reliability.  For each of the 59 storms in the 2003-2004 database, the date-time-

group (DTG) of the (first) peak intensity was determined for the series of intensity 

predictions verifying at this time of peak intensity (-120 h, -96 h,…-12 h, 0 h).  

The averages of all predictions of peak intensity minus the actual intensity for the 

various forecast intervals that could be verified are shown in Fig. 4.12.  In this 

case, a non-homogeneous sample is allowed to maximize the sample sizes.   
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Figure 4.12 Intensity forecast errors (kt) at the date/time of the first peak 

intensity of each of the 59 TCs during 2003 and 2004 by the 
various techniques and the JTWC (see insert).  The small numbers 
above each bar indicate the number of cases. 

 
Even only 24 h before the time of peak intensity, all of the intensity 

prediction techniques and JTWC forecasts have an average error of -9 kt or more 

(under-forecasts).  Using ST5D as a skill measure, only the STIP has skill among 

the five other intensity prediction aids at 24 h, and yet JTWC forecasters are able 

to use this guidance (and other information) to add value.  These features 

continue at 48 h, except the tendency for under-forecasting of the peak intensity 

is even stronger, and only the STIP and GFNI have skill relative to ST5D.  The 

JTWC forecasts at 48 h prior to peak intensity are on average about 17 kt too 

low.  The same trend toward under-forecasting of the peak intensity exists at 72 

h.  Only the STIP has a little skill relative to the ST5D, and the JTWC continues 

to have the most skill, although they under-forecast the peak intensity by nearly 

24 kt on average.  Beyond 72 h, the number of available intensity techniques 

decreases, and the sample sizes also decrease because few forecasts of peak 

intensity 96 h or 120 h into the future may be validated.  Thus, not too much 

confidence can be placed in these calculations.  Those 120-h JTWC forecasts of 

peak intensity are under-forecasts by about 28 kt on average. 
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3. Rapid Intensification 
Overlays of storm intensity and the intensity forecasts (e.g., Fig. 1.1) 

displayed for all storms during the 2003 and 2004 seasons revealed many of the 

techniques missed periods of large intensity change.  That is, for most of the 

techniques, the predicted rates of intensification were often less than the actual 

rate of intensification.  As a result, many of the techniques under-forecast storm 

intensity during Phase II.   

a. Definition 
The majority of intensity forecast techniques could not predict 

intensification rates equal to or exceeding 30 kt/day.  That is, an ‘upper bound’ on 

predicted intensification rates for most of the techniques seems to be at or below 

30 kt/day.  Therefore, ‘rapid intensification’ (as applied to this thesis) refers to a 

forecast or observed intensity increase equal to or exceeding 30 kt/day. As a 

comparison, Holliday and Thompson (1979) defined western North Pacific rapid 

intensification as a 24-h central pressure fall equal to or greater than 42 mb (top 

25% of all intensification cases). 

Based on estimates of model-predicted intensity change from the 

storm overlays, the majority of the techniques, a majority of the time, predicted 

intensity increases between 10 and 20 kt per day, which may be regarded as a 

‘typical’ rate of intensification.  The middle ground between typical intensification 

and ‘rapid’ intensification would then be considered an ‘above-average’ rate of 

intensification.  Finally, intensity change increases less than 10 kt/day are 

considered ‘slow’. 

b. Subjective Evaluation 
Having defined the threshold for rapid intensification, all intensity 

forecast techniques (and the JTWC intensity change forecast) were evaluated as 

to their capability to predict rapid intensification.  Predictions by each technique 

were examined for all times +/- 24 h relative to the actual time.  If any of these 

predictions matched (or exceeded) the rapid intensification thresholds, it was 

regarded as a hit.  Conversely, if none of the predictions within +/- 24 h matched 

or exceeded the threshold, then the event was recorded as being missed.   
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Overall, 28 cases of rapid intensification were observed during 

2003/2004 (Figure 4.13).  The ST5D, STIP, and AFWI did not provide any 

guidance as to rapid intensification events with zero, one, and zero (respectively) 

correct predictions of the 28 observed periods of rapid intensification.  Likewise, 

the three and six successful predictions (within +/- 24 h of the actual event) by 

the JTYI and CHIP models are not really useful guidance.  Whereas the GFDI 

model did predict 10 of the 28 rapid intensification events, it has a tendency to 

over-predict intensification.  Based on this guidance, JTWC was able to forecast 

only 6 of the 28 events within +/- 24 h of the time of actual rapid intensification. 
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Figure 4.13 The number of cases that a forecast technique or JTWC 

adequately predicted an observed period of rapid intensification.  
 
4. Distribution of Intensification Rates During Phase II 
A skillful intensity guidance technique should have two properties:  (i) The 

mean of the intensity change predictions should be equal to the mean of the 

observed intensity changes, i.e., the technique should not have a bias; and (ii) 

The distribution of intensity changes predicted by the technique should be similar 

to the distribution of observed intensity changes.  The analyses in the preceding 

subsections of the intensity changes at various time intervals during Phase II 
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indicate biases exist and that the intensity techniques do not provide good 

guidance for rapid intensification events. 

In this section, the observed distribution of 48-h intensity changes from the 

beginning of Phase II (initial intensity of 35 kt) will be compared with the 

predicted distributions by the various techniques.  Although other time intervals 

were examined, the first 48 h of Phase II may best distinguish between the 

durations and characteristic intensification rates.  Recall from Chapter III.C that 

the average durations in Phase II are 1.5, 3.5, and 7.0 days for short-lived, 

average-lived, and long-lived storms.  So, the 48-h period for an average-lived 

storm is half the expected intensification period, and on average the 

intensification will be over for a short-lived storm.  The results of this evaluation 

are displayed in Figure 4.14 (a-g). 
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48-h Intensity Change Forecasts for TCs with Initial Intensity of 35 kt in Phase II
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Figure 4.14 (a-g) Phase II graphs of actual 48-h intensity change distribution 

plotted with the 48-h intensity change distributions of all the various 
techniques and JTWC. 

 
The observed 48-h intensity change distribution, which is repeated in each 

panel in Fig. 14, ranged from –10 kt (indicates some cases of decay after 48 h 

since the beginning of Phase II) to greater than 70 kt.  The highest percentages 

of 48-h intensity change for this small sample were at 20, 30, and 40 kt.  Almost 
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one-half of all 48-h intensity changes ranged between 20 and 40 kt, and just over 

three-quarters of the observed changes were between 10 and 55 kt. 

The histogram of observed intensity changes are compared with the 

climatology and persistence technique (ST5D) in Figure 4.14a.  The ST5D rarely 

produced rates lower than 5 kt or higher than 35 kt, and thus has a relatively 

narrow intensity change distribution relative to the observed distribution.  Nearly 

60% of the ST5D 48-h intensity change forecasts had intensification rates 

between 10 and 20 kt, and 92% of these forecasts remained between 5 and 30 

kt.  Thus, not only does the ST5D have a bias toward lower 48-h intensity 

changes, it does not provide guidance on the larger observed intensity changes 

in Phase II.   

Similarly, nearly 58% of the statistical-dynamical technique STIP 

intensification rates from the beginning of Phase II were 20-30 kt/48 h (Fig. 

4.14b).  While the distribution of STIP predictions in this small sample ranged 

from –5 kt/48 h to 40 kt/48 h, the STIP technique infrequently generated 

intensification rates less than 10 kt or greater than 35 kt.  Thus, the STIP 

technique will over-intensify the weak intensifiers (or the 48-h decay cases) and 

under-intensify the more rapid intensifiers at the beginning of Phase II.   

Whereas the ST5D and STIP techniques had positively skewed peaks in 

their distributions, the GFNI peak 48-h intensity change (Fig. 4.14c) was centered 

about 0 kt (i.e., no change), which indicates the GFNI model has little skill in the 

early intensification of Phase II.  Indeed, ~55% of GFNI intensification rates were 

between –5 kt and 5 kt.  Sometimes the GFNI model will provide an indication of 

intensification, and nearly 28% of the GFNI intensification rates ranged from 10 

kt/48 h to 25 kt/48 h.  However, the GFNI model does not predict the typical 

distribution of intensification rates or the largest values.   

The peak of the AFWI distribution (Fig. 4.14d) was strongly centered on 5 

kt, with over 75% of the 48-h intensity change forecasts having rates between –5 

kt and 15 kt.  As will be shown in Fig. 4.20 below, many AFWI forecasts had a 

flat intensity profile—especially beyond 24 h.  The very different observed and 
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AFWI distributions in Fig. 4.14d clearly indicate the AFWI will not provide useful 

guidance in the early intensification stage of Phase II.   

The coupled ocean-atmosphere model (CHIP) 48-h intensification rates 

(Fig. 4.14e) varied over a large range, as this technique produced 48-h intensity 

change forecasts between –15 kt and 90 kt.  Unfortunately, the CHIP forecasts 

for seven of the 22 most intense (110 kt or greater) storms were unavailable.  

The peak of the CHIP distribution was centered on 15 kt, with just over 60% of 

the values between 0 kt and 30 kt.  Of the techniques in this study, CHIP 

produced the largest intensification rates, as two outlier forecasts reached 90 

kt/48 h.  However, the CHIP model also had some large 48-h decay values that 

did not verify.   

The JTYI model was similar to the GFNI and STIP models tendency to 

generate conservative 48-h intensity change forecasts in Phase II (Fig. 4.14f).  

The peak of the JTYI distribution was strongly centered on 10 kt, and 60% of the 

forecasts ranged between 5 and 15 kt.  Only 25% of the JTYI-generated 

forecasts ranged from 20 to 35 kt, and no forecasts exceeded 35 kt/48 h.  

Therefore, the JTYI model also does not provide good guidance as to the early 

intensification rates in Phase II. 

Finally, the JTWC 48-h intensity change distribution (Fig. 4.14g) is similar 

to the observed distribution in the range from –10 kt to 40 kt.  In fact, about ~88% 

of the JTWC 48-h intensity change forecasts were between 5 and 40 kt.  

However, the JTWC rarely forecast intensification rates greater than 40 kt/48 h, 

and thus missed the highest intensification rates (top ~20%).  Nonetheless, the 

JTWC produced a reasonable distribution of intensity change forecasts, which is 

encouraging given the rather limited range of intensity change distributions of the 

intensity guidance techniques that they had available. 

  An additional representation of the 48-h intensity change distributions is 

given in Figure 4.14h.  This summary clearly indicates that the averages of all the 

predicted intensity change distributions remain below the average of the actual 

distribution, which reaffirms that all of the intensity guidance techniques and the 
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JTWC forecasts have a bias of under-estimating the rates of intensification 

during Phase II.  The too-low intensity change bias of the dynamical models 

(GFNI, AFWI, and JTYI) is particularly noteworthy.  Except for the CHIP model, 

all of the intensity guidance techniques and the JTWC have too narrow ranges of 

intensity change forecasts.  In particular, none of the techniques or JTWC has 

the proper number of rapid intensification forecasts during the early 

intensification stage of Phase II.  The too-low bias and too-small range of 

intensity changes for the dynamical models (GFNI, AFWI, and JTYI) leads to 

almost no overlap with the actual intensity change distribution.  Because much of 

the guidance does not even fall within the actual intensity change distributions, it 

is clear that improvements in the intensity forecast guidance are needed, and 

particularly for rapid intensification events.   
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Average 48-hour Forecast of Intensity Change for TCs with Initial Intensity of 35 kt in Phase II
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Figure 4.14h Stick diagram of 48 h intensity change distributions for 59 TCs 

during the 2003-2004 seasons with an initial intensity of 35 kt.  The 
diagram includes the actual intensity change distribution and the 
distributions of all the various techniques.  The heavy dot 
represents the mean intensity change value (kt) while the length of 
the sticks represents plus or minus one standard deviation about 
the mean. 

 
D. PERFORMANCE DURING DECAY/REINTENSIFICATION CYCLES 

Secondary peaks, whether due to internal storm processes or caused by 

environmental factors, correspond to Phase IIa of the intensity framework (see 

Fig. 3.2).  The capability of the techniques to predict changes in Phase IIa was 

examined with an assessment of ‘secondary peaks.’  For this thesis, a secondary 

peak is defined as a reintensification of 10 kt or greater following an initial decay 

cycle of 10 kt or greater (e.g., eyewall replacement cycles).   

Predictions by each technique were examined for all times +/- 24 h relative 

to the actual time of secondary peaks.  If any of these predictions reasonably 

matched the phase (timing) and magnitude of intensity oscillations, it was 

regarded as a ‘hit’.  Conversely, if none of the predictions within +/- 24 h 
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reasonably matched the phase and magnitude of intensity oscillations, then the 

event was recorded as being missed. 

Overall, 12 cases of secondary peaks were observed during the 2003 and 

2004 seasons (Figure 4.15).  None of the techniques captured more than 25% of 

observed secondary peaks.  The climatology and persistence technique ST5D 

registered zero hits, and the statistical-dynamical STIP had only one.  One could 

surmise that the ST5D and STIP tend to expect only one intensity peak 

(especially when the intensity oscillations occur over a relatively short time 

period).  While the dynamic model techniques (GFNI, AFWI, CHIP, and JTYI) 

were an improvement over the ST5D and STIP, they still missed almost all of the 

secondary peaks.  The question is whether even with increased spatial/temporal 

resolution and better model physics will these techniques predict eyewall 

replacement cycles or other internal processes that lead to secondary peaks.  

Qualitatively, the GFNI forecasts produced intensity oscillations more often than 

the other dynamic models, but the timing and magnitude of the oscillations often 

did not meet the thresholds required to count as a ‘hit.’  Despite a dearth of 

skillful guidance, the JTWC outperformed all of the techniques by recording five 

‘hits’ within +/- 24 h of the observed secondary peaks. 
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Figure 4.15 Number of cases (out of 12) a forecast technique adequately 

predicted an observed secondary intensity peak.  
 
E. PERFORMANCE DURING DECAY PHASE 

1. Ability to Forecast Phase III Intensity Trends 
Similar to intensity trend analysis for Phase II, all of intensity technique 

predictions during Phase III were examined for the trend thresholds in Fig. 4.5 

(from peak intensity through final decay, or end of best track data).  If the storm 

had a decay/reintensification cycle (i.e., Phase IIa), then the primary decay 

phase (Phase III) started at the DTG of the secondary (or last) intensity peak and 

continued until final decay.   

a. Good (G) Intensity Trends During Phase III 
All of the intensity guidance techniques and the JTWC forecasts 

had rather high percentages of G intensity trend forecasts (Fig. 4.16) at 12 h (> 

60%).  However, the ST5D (or the STIP) had the highest percentage of G 

intensity trends out to 84 h, and consequently, none of the other techniques had 

skill relative to the these two models.  In fact, the ST5D performance actually 

improved between 48 and 72 h, when this technique had G intensity trends over 

80% of the time.  The percentage of GFNI G intensity trends gradually decreased 

between 12 h (~68%) and 48 h (~52%), and then increased from 48 h to 84 h 
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(~75%).  That is, the GFNI performed best at the early and later forecast intervals 

during the decay phase.   

While the AFWI technique G intensity trends were above 60% at 12 

h, the percentage of G intensity trends dramatically declined between 24 and 48 

h, and reached a low of ~23% G intensity trends for the 48-h forecasts.  Indeed, 

the percentage of G trends remained under 40% from 24 h to 72 h, which 

indicates that the majority of AFWI forecasts are poor during the decay phase.  

Good intensity trend guidance from the CHIP technique remained above 60% at 

all forecast intervals, and these G trends actually increased between 36 h (~65%) 

and 72 h (~84%).  Although the CHIP outperformed four of the other intensity 

change guidance techniques at 72 h, it was not better than ST5D and thus can 

not be said to have skill.  The percentage of G intensity trends for JTYI 

decreased between 12 h (~69%) and 48 h (~44%) and then increased from 48 h 

to 84 h (~68%).  Thus, the majority of JTYI forecasts are poor during the middle 

of the forecast interval.  For JTWC, the percentage of G intensity trends 

remained above ~69% at all forecast intervals, but only had skill relative to both 

the ST5D and STIP at 12 h and 96 h.  However, sample sizes of verifying 

forecasts decrease dramatically beyond 84 h so that the higher-than-expected G 

intensity trend percentages between 96 and 120 h are not likely to be significant.   
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Figure 4.16 Percentage of Good intensity trends during the decay Phase III for 
the combined 2003 and 2004 seasons.  Sample sizes of the 
verified forecasts range from 400 at 12 h to less than 30 by the 96-
h point.  A Good forecast during decay indicates that the magnitude 
of the forecast decay rate is within +/- 10 kt of the actual decay rate. 

 
b. Under (U) Intensity Trends During Phase III 
The percentage of U intensity trends during the decay Phase III 

(Fig. 4.17) remained very low (almost all below 17%) at all forecast intervals.  

These low U intensity trend percentages indicate that nearly all of the techniques 

(at all forecast intervals) do not generate excessive rates of decay.  The one 

exception is the CHIP technique, which produced a ~26% U intensity trend at 12 

h.  That is, nearly one-fourth of all CHIP forecasts verifying at the 12-h interval 

had intensity decreases that exceeded the actual rate of decay.  Except for 

CHIP, the other techniques and JTWC have skill relative to ST5D in not having 

too many cases of overly rapid decay. 
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Figure 4.17 Percentage of Under intensity trends during the decay Phase III for 
the combined 2003 and 2004 seasons.  Sample sizes of the 
verified forecasts range from over 400 at 12 h to less than 30 by the 
96-h point.  An under-forecast during decay indicates that the 
magnitude of the forecast decay rate is greater than the magnitude 
of the actual decay rate. 

 
c. Over (O) Intensity Trends During Phase III 
For most of the techniques, the percentage of O intensity trends 

(Fig. 4.18) increased between 12 and 48 h, and then decreased between 48 and 

84 h.  Thus, the cases of over-forecasts were highest during the middle (~48 h) 

of the forecast interval for a majority of the techniques.  The large percentage of 

Over forecast trends means that many intensity forecasts were greater than the 

observed verifying intensity, implying that the techniques do not decay a TC fast 

enough.  The AFWI technique produced the most dramatic examples of over-

forecasts during Phase III, which indicates especially poor performance during 

the decay cycle.  For example, over 60% of all forecasts at 36, 48, and 60 h 

provided erroneous guidance on the rate of decay, and the performance was not 

much better for the 24- and 72-h forecasts.  Similarly, over one-third of all JTYI 

forecasts between 24 and 60 h were over-forecasts during the decay phase, with 
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the worst performance for the 48-h forecasts (~55% U).  As mentioned earlier in 

the Phase II trend analysis, the AFWI intensity guidance (and to a lesser extent 

the JTYI) was often for flat intensity trends.  Thus, these O intensity trends 

indicate that the AFWI and JTYI cannot predict the actual rate of decay (i.e., the 

observed rate of decay remains at least 10 kt above the forecast rate of decay).   

The percentages of GFDI over-forecasts between 12 and 72 h were 

also rather large, especially at 24 h (~38%), 36 h (~43%), and 48 h (~47%).  

Again the GFNI-generated forecasts performed the worst during the middle of the 

forecast interval. The STIP had rather large percentages of O intensity trends 

between 36 and 60 h, when greater than one-third of all STIP forecasts were 

over-forecasts during the decay phase.  The CHIP technique had the second-

lowest percentages of over-forecasts during the decay phase, which indicates 

that this model often produces decay rates that are greater in magnitude than the 

other techniques.   

In contrast, the ST5D technique had the lowest percentage of O 

intensity trends at all forecast intervals, as the majority of ST5D percentages 

remained well below 20%.  Therefore, none of the intensity techniques had skill 

relative to the ST5D during the decay Phase III in terms of the intensity trend 

analysis as in Fig. 4.5.  Lastly, Phase III forecasts produced by the JTWC had 

rather low percentages of over-forecasts when compared to most dynamic 

techniques.  However, the official forecasts also did not have skill in relation to 

the ST5D during the decay phase. 
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Figure 4.18 Percentage of Over intensity trends during the decay Phase III for 
the combined 2003 and 2004 seasons.  Sample sizes of the 
verified forecasts range from 400 at 12 h to less than 30 by the 96-
h point.  An over-forecast during decay indicates that the magnitude 
of the forecast decay rate is less than the magnitude of the actual 
decay rate. 

 
d. Phase III Intensity Trend Summary 
This evaluation of the capability of the various techniques to predict 

intensity trends (according to the categories in Fig. 4.5) is rather discouraging in 

that the ST5D produced the most reliable intensity change guidance during the 

decay phase.  As a result, none of the other techniques added value relative to 

the no-skill ST5D.  While the CHIP did not produce accurate forecasts during 

intensification, this technique was second only to the ST5D in performance 

during decay.  The STIP had the third-best performance in Phase III.  

Surprisingly, The AFWI, JTYI, and GFNI performed the worst during decay, as 

these techniques consistently had decay rates less than the actual rate of decay.  

While the JTWC forecasts added value relative to many of the techniques, the 

official forecasts infrequently added value relative to the ST5D. 

 



55 

2. Intensity Forecasts Verifying at the 45-kt Decay Point 
A ‘damaging wind’ threshold of 50 kt is often set at military bases.  Just as 

forecasting onset of 50 kt winds is important, the time at which the winds decay 

below 50 kt (say to 45 kt) is also a relevant threshold (e.g., when base operations 

may resume and recovery operations begin).  Therefore, it is of interest whether 

the intensity techniques can provide accurate guidance of the decay to 45 kt.   

In this evaluation, the DTG in each of the 26 storms that had decay down 

to 45 kt (or the DTG immediately following 45 kt if the storm decay passed 

through the 45-kt point) was extracted.  Then all forecasts (i.e., -120 h, -96 h,…   

-12 h) that could be verified at the DTG of 45 kt decay point were collected.  The 

difference between the predicted intensity and the actual intensity (45 kt) is 

defined as the error.  Decays to other intensities were examined, but the 45 kt 

value yielded the largest number of cases, in part because many storms are not 

tracked during an extratropical transition phase or after landfall (where intensity 

abruptly ends above 45 kt).  Weak storms (50 kt or less) were also excluded in 

this analysis, primarily because they did not exhibit a well-defined decay phase 

(or were already at the decay threshold).   

Since the average 24-h forecast errors verifying at 45 kt in the decay 

phase (Fig. 4.19) are positive, a tendency exists for the intensity prediction 

techniques and the JTWC to under-forecast the decay rate on average.  Using 

ST5D as a skill metric, only the CHIP and JTWC have some skill in this aspect of 

the decay phase.  The other techniques (STIP, GFNI, AFWI, and JTYI) all have 

no skill compared to the ST5D.  Given the typical performance of the AFWI 

model (Fig. 4.20) for the decay phase, it is not surprising that this model already 

by 24 h has 25 kt under-forecasts of the decay rate on average. 
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Figure 4.19 Observed intensity errors (kt) using the date/time of decay down to 
45 kt as a verification point.  The small numbers above each bar 
represent the number of cases.  Note again that a non-
homogeneous sample is allowed to maximize the members of 
cases for analysis.   
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Figure 4.20 Common intensity change forecast errors for the AFWI.  The heavy 

blue line represents observed storm intensity, while the colored 
lines indicate individual model forecasts every 6 h.  Forecasts every 
6 h during Phase III fail to capture the actual decay rate.   
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Similar error characteristics as at 24 h exist for the average 48-h forecasts 

verifying at the 45-kt decay point (Fig. 4.19).  That is, only CHIP and JTWC have 

skill relative to ST5D, although both under-forecast the decay rate by about 15 

kt/48 h on average.  It is somewhat surprising that the STIP under-forecasts the 

decay rate (to the 45 kt threshold) by 30 kt/48 h on average, which suggests that 

the sample examined here has very different characteristics from the 

developmental sample for STIP.  Whereas the dynamical models (GFNI and 

AFWI) have even larger under-forecasts of the decay rate to the 45 kt threshold, 

the JTYI has about the same magnitude error as STIP (but is not skillful relative 

to ST5D). 

Only the CHIP model has skill at 72 h in predicting the decay to 45 kt.  

Since STIP, GFNI, and JTYI errors at 72 h are smaller than at 48 h, this is 

probably indicative of too small sample sizes of forecasts that can be validated.  

Similarly, the sample sizes for 96 h and 120 h forecasts of decay to 45 kt are too 

small for conclusive results.  For those JTWC forecasts that are available, they 

do not have skill relative to ST5D. 

3. Rapid Decay 
a. Definition 
In the case of rapid decay, the stronger tropical cyclones (i.e., 

storms reaching typhoon intensity) were chosen due to data availability, since 

many of these storms have at least one period of rapid decay.  The majority of 

intensity change techniques could not predict observed decay rates equal to or 

exceeding 30 kt/day.  Therefore, the term ‘rapid decay’ (as applied to this thesis) 

refers to forecast or observed intensity decreases equal to or exceeding 30 

kt/day. 

b. Subjective Evaluation 
The analysis of rapid decay followed the same procedure as the 

analyses of rapid intensification and secondary peaks.  The technique was 

scored as a ‘hit’ if any forecast by the technique within +/- 24 h of the observed 

event predicted the rapid decay threshold defined above.  Just as for rapid 
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intensification, 28 storms had at least one period of rapid decay, and of these 28 

storms, 23 were typhoons that also had a period of rapid intensification. 

With the exception of the AFWI, the techniques were able to 

forecast more cases of rapid decay than cases of rapid intensification (Fig. 4.21).  

Of all the techniques, the CHIP captured the greatest number of rapid decay 

cases with 15.  The GFNI was next, as it predicted a period of rapid decay in 12 

cases.  Unlike the rapid intensification phase when an intensification rate ‘upper 

bound’ seemed to apply for ST5D and STIP, the rate of intensity decreases 

during Phase III often exceeded 30 kt/day.  In fact, some ST5D forecasts 

generated decay rates of about 35 kt/day for the strongest typhoons (110 kt or 

greater).  Nonetheless, the majority of Phase III climatology and persistence 

ST5D forecasts had decay rates of 10-20 kt/day.  Although a few STIP-predicted 

decay rates were as high as 30 kt/day, the majority of predictions were for decay 

rates of 10-20 kt/day.  The JTWC intensity change forecasts during the rapid 

decay events were superior to all of the intensity guidance techniques. 
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Figure 4.21 Number of cases when a forecast technique adequately predicted 

an observed period of rapid decay. 
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4. Distribution of Decay Rates During Phase III 
Whereas some of the intensity guidance techniques demonstrated that 

they were capable of producing periods of rapid decay, an evaluation (similar to 

the analysis for the early intensification stage in Phase II in Chapter IV.C.4) was 

performed to determine quantitatively the distributions of predicted decay rates.  

This evaluation included all 48-h intensity change forecasts that started at the 

DTG of the peak intensity (or the last secondary peak) and continued into Phase 

III.  The 48-h period was again chosen to focus on the critical decay period.  The 

results of this evaluation are displayed in Figure 4.22 (a-g). 

The actual 48-h decay rates, which are repeated in each panel of Figure 

4.22, ranged from over –70 kt to only –5 kt, with the highest percentages 

occurring at –15, -20, -25, and –35 kt.  In fact, over 60% of the decay distribution 

fell between –35 kt and –10 kt.  Keeping in mind that this is a small sample, it is 

interesting that the rapid decay cases almost appear as a separate sample from 

the more typical decay rates.  That is, the -60 to -70 kt decays in 48 h are well-

separated from the primary range of decays of -15 to -35 kt.  It seems likely that 

the very rapid decays are associated with landfall, but this needs to be verified.  If 

the decays are due to landfall, then to correctly forecast the timing and 

magnitude of the decay, the techniques must have a correct track forecast.  Any 

error in the timing of the landfall in the track forecast will necessarily introduce an 

error in the forecast of a rapid decay.  Of course, a rapid decay of such 

magnitude is more likely with an intense cyclone at the initial time.  The 

intermediate decay rates between the secondary peak and the primary decay 

rates may thus represent decays of a less intense cyclone.   

In comparison, the ST5D has a much wider spread of 48-h intensity 

changes than in the observed histogram (Fig. 4.22a).  Even though this 

technique predicted a number of rather large rates of decay, it also erroneously 

predicted intensification in many cases.  In fact, the highest percentage of decay 

rates predicted by the ST5D were centered about the ‘no change’ 0 kt.  Since by 

definition the sample was formed from the cyclones in Phase III from the last 

peak in the intensity curve, all values should be negative.  The cluster of values 
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in the zero or positive range for the ST5D indicates that this climatology and 

persistence technique often cannot catch the beginning of the decay phase.  

That is, the developmental sample for the ST5D indicated that many cyclones in 

that location, time of year, and intensity had on average intensified rather than 

decayed.  This false indication might arise because the decaying cases had a 

different direction (say moving toward land or toward a cooler ocean) than the 

average climatological track.  That is, the forecaster should be aware that a 

storm with a forecast track that markedly departs from the climatological track for 

that location/season may not be well represented by an intensity technique 

based on climatology.   

The intensity change distribution of the STIP (Fig. 4.22b) was similar to 

that of the ST5D, except this technique had an even higher percentage (~23%) of 

0 kt intensity change.  Over one-quarter of the STIP forecasts also erroneously 

predicted intensification during Phase III.  Thus, the additional predictors in STIP 

beyond those in ST5D do not overcome the erroneous intensifications in a 

sample that actually only has decays.  Indeed, the same intensity change 

dependence on location, time of year, and intensity predictors that enter into the 

ST5D may be exerting too much influence on the STIP prediction.  Whereas the 

STIP predictors are calculated along the JTWC-predicted track, the anomalous 

track aspect should be taken into account (if the track prediction is correct).     

The distribution of intensity change forecasts produced by the GFNI (Fig 

4.22c) were similar to the STIP technique in that a relatively large distribution of 

decay rates were predicted, but also had forecasts of positive intensity changes 

about 20% of the time during decay.  For the relatively large number of zero and 

positive changes, these cases indicate the factors leading to decay are not 

included in the model.  This failure could be due to an erroneous track prediction 

near landfall or a failure to predict recurvature toward lower sea-surface 

temperatures. 

Just as the AFWI tended to predict flat intensity profiles during Phase II, 

this technique also generated the lowest rates of decay during Phase III, with a 
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majority of the guidance only producing decay rates between –5 and 5 kt/48 h.  

This is supported by the flat intensity forecasts in the decay phase of the 

example in Fig. 4.20.  While the AFWI forecasts tend to have small decay rates 

early in the forecast interval, subsequent intensification trends return the forecast 

to the initial value (especially by 36-48 h).  Thus, the technique departs from 

reality by 24 h, and at later forecast intervals severely under-forecasts the rate of 

decay (especially during rapid decay periods). 

Some very large decay rates were predicted by the CHIP model during 

Phase III (Fig. 4.22e).  In fact, this intensity guidance technique produced some 

of the highest rates of decay, with several predictions of 48-h decay rates at or 

exceeding 50 kt.  Of all the techniques, the CHIP seems to perform best in 

forecasting large decay rates over land and while a TC translates over lower 

SSTs.  Nevertheless, the CHIP produced erroneous forecasts for intensification 

of up to 50 kt/48 h during Phase III, and the highest percentage of CHIP-

predicted decay rates were centered on the ‘no change’ 0 kt.  Such a large 

number of zero and positive intensity change during a decay period would cause 

the forecasters to ignore this technique. 

The JTYI intensity change distribution (Fig. 4.22f) was also strongly 

peaked at 0 kt, and over 60% of the forecasts ranged between –20 kt and 0 kt.  

Similar to the GFNI, the JTYI is able to predict some large decay rates.  As with 

the other intensity change techniques, the JTYI erroneously predicted some 

cases of intensification during the decay Phase III.  Overall, the JTYI 48-h 

intensity change histogram most resembles the GFNI with fewer over-forecasts, 

but more zero values. 

Lastly, over 50% of the JTWC 48-h intensity change forecasts (Fig. 4.22g) 

ranged between –25 kt and 0 kt, and nearly one-third of the forecasts had values 

at or less than –35 kt.  Since the JTWC did predict rates of decay at or below –60 

kt/48 h, it may indicate that forecasters favor guidance from the ST5D, STIP, or 

CHIP techniques (or perhaps other techniques that produced rapid decay but 

were not evaluated in this thesis) when anticipating high rates of decay.  Perhaps 
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the greatest criticism of the JTWC forecasts is the too-small numbers of the 

primary cluster of decay rates in the range of -15 kt to -25 kt decreases over a 

48-h period. 

48-h Intensity Change Forecasts for TCs Starting at Decay during Phase III 
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Figure 4.22 (a-g) Phase III graphs of actual 48-h intensity change distribution 

plotted with the 48-h intensity change distributions of all the various 
techniques and JTWC. 

 

The stick diagram in Fig. 4.22h is a summary of the 48-h decay rates in 

Phase III similar to the summary for the intensification rates in Phase II (Fig. 
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4.14h).  Notice that the mean observed decay is about 30 kt in 48 h with a 

standard deviation of almost 20 kt.  However, a rather broad range of 48-h decay 

rates is predicted by many of the intensity guidance techniques.  This is in 

contrast to the relatively narrow distributions of intensity change observed during 

Phase II (Fig 4.14h).  Specifically, the ST5D, STIP, and CHIP had much larger 

distributions than what occurred in reality, in part due to the significant number of 

intensification predictions.  All of the intensity guidance techniques had average 

rates of decay that were smaller than the actual average rate of decay.  In fact, 

the AFWI actually had an average intensification rather than decay.  Even the 

JTWC average decay was about 10 kt smaller than the actual decay average.  If 

the under-forecast bias could be corrected for ST5D, STIP, and JTYI, the overall 

distribution would match the actual distribution.    

Average 48-hour Forecast of Intensity Change for TCs Starting at Decay (Phase III)
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Figure 4.22h Stick diagram of 48-h intensity change distributions for TCs starting 

at decay.  The diagram includes the actual intensity change 
distribution and the distributions of all the various techniques.  The 
heavy dot represents the mean intensity change value (kt) while the 
length of the sticks represents plus or minus one standard deviation 
about the mean. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. INTENSITY GUIDANCE ACCURACY 

Operational forecasters must exercise caution while evaluating the many 

sources of TC intensity guidance.  For example, a dynamic model forecasting the 

most accurate track (or another model projected along the same track) is not 

necessarily the model with the best intensity forecast. Subjective and objective 

analyses support the thesis that intensity guidance in the western North Pacific 

does not have consistently good skill relative to a no meteorological skill 

technique of climatology and persistence (ST5D).  A thorough intensity change 

forecast also requires knowledge of intensity guidance forecast traits (e.g., 

strengths/weaknesses and initialization processes) and a meteorological 

knowledge base of the synoptic/storm environment (e.g., formation regions, TC 

structure, and interactions between the TC and the environment).  Arbitrarily 

selecting a particular intensity forecast versus another ignores the meteorological 

changes taking place within the storm and the surrounding storm environment. 

(Carr and Elsberry 1994).   

Several objective and empirical evaluations presented in this thesis 

demonstrated that the available pool of statistical, statistical-dynamical, and 

dynamical model intensity change guidance does not skillfully predict future 

intensity change.  On average, all of the various intensity guidance techniques 

and JTWC under-forecast peak intensity during Phase II.  Additionally, all of the 

techniques and the JTWC (on average) under-forecast decay rates during Phase 

III (i.e., predicted decay too small).  Many of the intensity guidance techniques 

did not capture periods of rapid intensification and decay, nor did they adequately 

predict intensity oscillations during Phase IIa. 

Indeed, current efforts to establish a consensus approach to future 

intensity change are restricted, as no technique regularly outperformed guidance 

from the ST5D.  The technique that most frequently adds skill to the ST5D is the 

STIP, which introduces environmental predictors such as sea-surface 
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temperature and vertical wind shear calculated along the JTWC-predicted track.  

The CHIP model also moves storms along the predicted track and predicts the 

SST changes under the eyewall owing to the accumulated atmospheric forcing 

as the front half of the storm approaches.  An empirical vertical wind shear 

correction is also added in CHIP.  The dynamic models (GFNI, AFWI, and JTYI) 

predict intensity as well as track, and rarely show skill relative to the ST5D. 

 

B. INTERPRETING AVAILABLE MODEL OUTPUT 

As this thesis only examined the 2003 and 2004 seasons, additional 

efforts will be required to assess model performance during the 2005 season and 

beyond.  Moreover, any modifications to members of the model pool should 

initiate new model evaluations.  With these caveats in mind, the following findings 

are offered as an approach for operational forecasters to interpret tropical 

cyclone intensity guidance based on observations and analysis from the 2003 

and 2004 western North Pacific tropical seasons.  A summary of these findings is 

presented in Table 5.1. 

1. ST5D 
This technique performed well for typical intensification rates (10-20 

kt/day), but did not predict the onset and magnitude of rapid intensification.  

Forecasts beyond 48 h during the intensification stage often remained well below 

the verifying peak intensity value.  Additionally, subjective analysis revealed that 

the maximum intensity forecasts of the ST5D typically remained below 110 kt 

(perhaps an upper bound for ST5D intensity prediction). 

This technique consistently forecasts decay immediately following the first 

intensity peak.  That is, the ST5D cannot capture decay/reintensification cycles 

often associated with the strongest storms.  On the other hand, the ST5D can 

capture some rapid decay cases (e.g., up to 30 kt/day), especially for storms 

moving toward higher latitudes (and presumably lower SSTs and increasing 

vertical wind shear).  However, the timing of this decay is often too early, and the 

ST5D missed the steepest decay rates associated with landfalling TCs.  Despite 

the shortcomings at peak intensity and during Phase IIa, this technique 
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consistently provided useful intensity change guidance during Phase II and 

Phase III. 

2. STIP 
The STIP also performed well for typical intensification rates (10-20 

kt/day), but even with the added dynamical component, the technique did not 

provide forecasts with intensification rates greater than ~20 kt/day.  However, the 

added dynamic component may account for an increase over the ST5D in 

forecasts of maximum intensity.  That is, despite these typical rates of 

intensification, the STIP technique generated maximum intensity forecasts that 

exceeded 110 kt. 

As with the ST5D, this technique forecast persistent decay after the first 

intensity peak.  Thus, it too could not capture the decay/reintensification cycles 

often associated with the strongest storms.  Furthermore, the STIP did not 

capture periods of rapid decay, and the average decay rate was only ~10-15 

kt/day instead of the real average of about 33 kt.  This technique added value to 

the guidance produced by the ST5D in some instances, especially during 

intensification (Phase II).   

3. GFNI 
On the whole, this technique often outperformed the forecasts produced 

by the other dynamic, full physics techniques (i.e., AFWI and JTYI).  When the 

GFNI correctly predicts intensification, the forecast rates are usually between 5 

and 15 kt/day.  However, the GFNI does not produce these intensification rates 

as often as the ST5D or STIP.  On occasion, this technique generated 

intensification rates approaching 30 kt/day, but only after about 48 h into the 

intensification cycle.  The GFNI had some success in capturing 

decay/reintensification cycles, as it produced the largest magnitude of intensity 

oscillations when compared to the other techniques.  Nevertheless, the timing of 

these intensity oscillations was often off by 24 h or more. 

Intensity guidance generated during Phase III frequently produced over-

forecasts of storm intensity between 24 and 48 h (i.e., forecast guidance 
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remained well above the storm decay rate).  However, these over-forecast 

tendencies diminished beyond 48 h, as the forecast decay rate approached the 

actual decay rate.  One important consideration is that the GFNI rarely produced 

under-forecasts (i.e., rates of decay that exceeded the actual rate) of intensity 

change during Phase III.  

4. AFWI 
The forecasters should abandon AFWI guidance, especially if forecasting 

the onset of rapid intensification and decay.  While a large majority of AFWI 

intensity change forecasts tend to undershoot actual storm intensification, there 

are a few cases of erroneous intensification at or just after the peak intensity has 

occurred—especially for intense TCs (110 kt or greater).  That is, if a storm 

reaches an intense level, a few forecasts may continue to intensify storms 

beyond the PI given the location and storm environment.  Conversely, the 

technique persistently under-forecasts observed rates of decay (especially in 

rapid decay cases), which results in gradual intensity declines rather than a 

decay. 

Another problem is that the majority of AFWI intensity trends are either 

‘Over’ or ‘Under’ the storm intensity, and there is less than a 50/50 chance that 

any 12-h forecast interval will provide ‘Good’ forecast trends (within 10 kt of the 

best track).  Therefore, AFWI guidance becomes unreliable beyond 12 h, and is 

especially unreliable after 24 h.  A possible exception to the mostly poor AFWI 

guidance is that the technique provided adequate intensity change forecasts for 

short-lived (weak) storms having only small intensity fluctuations and slow 24-h 

intensification rates (e.g., 5-10 kt). 

5. CHIP 
The CHIP technique indicated the onset of some rapid 

intensification/decay periods.  In fact, this technique produced the highest rates 

of intensification/decay in relation to all of the other intensity guidance 

techniques.  However, the timing of the intensification/decay was often off by 24 

h or more.  This was especially the case as the storm reached peak intensity, 

and the CHIP consistently forecast decay too early.  Nevertheless, the CHIP-
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predicted rate of decay is often closer to the actual rate of decay, at least in 

comparison to the other techniques.  In a manner similar to the AFWI, this 

technique provided adequate intensity change forecasts for short-lived (weak) 

storms having only small intensity fluctuations (e.g., storms in Phase I of the 

intensity framework).   

6. JTYI 
The JTYI followed the AFWI technique in producing poor intensity change 

guidance during the intensification Phase II.  This model often displayed an 

intensity profile similar to the AFWI model, with very modest intensification rates 

early (12 to 36 h), and near-constant intensity out to about 60 h.  In fact, the JTYI 

had a strong tendency to produce under-forecasts of intensity during the 

formation stage (between 24 and 48 h).  This may indicate that the model does 

not produce significant intensity change increases until the developing storm 

reaches a critical intensity.  Thus, it is reasonable to surmise that the JTYI may 

provide adequate intensity change forecasts for weak storms lasting longer than 

two days.   

This technique only produced typical rates of intensification, and these 

rates were not large enough to capture rapid intensification events.  The flat 

intensity change forecasts mentioned above resulted in very large under-forecast 

errors at peak intensity.  An evaluation of secondary peaks revealed that the 

JTYI is not capable of accurately predicting the timing and magnitude of intensity 

oscillations.  This technique could not predict periods of rapid decay.  Some 

observations indicated that the model could predict large decay rates (~30 

kt/day) for landfalling TCs.  While JTYI guidance is not bad at every forecast 

interval during Phase I, II, and III, the model rarely had skill relative to the ST5D. 
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Table 5.1 Summary of Phase I through Phase III model forecasts.  If 
forecasters anticipate a certain intensification/decay rate, then the 
Xs in each column indicate which model is most likely to produce 
that forecast. 

 
C. FUTURE WORK 

Future work is needed to improve upon the problematic TC intensity 

forecasts in the western North Pacific (and other tropical basins).  The systematic 

and integrated approach to tropical cyclone track forecasting detailed in Carr and 

Elsberry (1994) significantly improved TC track forecasting at the JTWC starting 

in the 1999 western North Pacific season.  Perhaps a similar, repeatable method 

could be applied to the intensity problem.   A systematic and integrated approach 

to TC intensity forecasting may eliminate outlying intensity forecasts, and thereby 

decrease the spread of model intensity forecasts about the consensus intensity 

forecast.  For this purpose, it is necessary to examine intensity errors by:  i) 

documenting observed intensity errors versus the official best track intensity; ii) 

classifying model performance against a control model representing a skill 

threshold; iii) inter-comparing model errors; iv) defining the synoptic/storm 

environment leading to a particular intensity/intensity change forecast; and v) 

identifying the strengths/weaknesses and sources of error for each of the 

techniques.  Moreover, operational forecast centers should define the required 

accuracy for intensity forecasts—then forecasters will know what represents a 

‘good’ intensity forecast at each forecast interval (e.g., 12, 24, 48, 72, 96, and 

120 h). 

Nearly Steady Intensity (Esp. TD in Phase I) 0 to 5 X X
Slow Intensification Rate (Esp. Moving WNW) 5 to 10 X X
Average Intensification Rate (Esp. Moving WNW) 10 to 20 X X
Rapid Intensification Period (Esp. Just After Formation) 30+ X X
Intensity Greater Than 110 kt Any X X X
Intensity Oscillations (Phase IIa) Any X
Slow Decay Rate (Esp. early in Phase III) 5 to 10 X X X
Average Decay Rate 10 to 20 X X
Decay Past STR Axis Any X X X
Rapid Decay at Landfall 30+ X X
Rapid Decay Moving Poleward 30+ X X

AFWI CHIP JTYIRate (kt) ST5D STIP GFNI24h Reasoning Indicates…
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Additionally, since the models and techniques infrequently add value 

relative to the ST5D, new intensity guidance techniques could be used to 

statistically assess when the information content of each technique is either to a 

larger or smaller degree of intensity change than would be expected from ST5D.  

That is, the objective of this approach would be to provide a combination of the 

guidance intelligence that will be more skillful than any of the individual 

techniques.  When that goal is achieved, forecasters can reasonably expect to 

add skill over each of the individual forecasts making up the consensus. 
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APPENDIX A:  WESTERN NORTH PACIFIC OPERATIONAL 
TROPICAL CYCLONE MODELS 

The acronyms denoting various guidance techniques are explained 

(where known). 

 

AFW1:  Air Force MM5 (original) 
 
AFWI:  Air Force MM5 Tracker (interpolated) 
 
BABI: Chinese Model Tracker (interpolated) 
 
BABJ: Chinese Met Agency Warning (Beijing) 
 
BCGZ: Chinese Met Agency Warning (from Guangzhou - not very common) 
 
CHIP:  Coupled Hurricane Intensity Prediction System  
 
CLIM:  Climatology 
 
CLIP:  Climatology and Persistence 
 
CON_:  General term for consensus model with different ending letter indicating 

a specific combination of models (see below) 
 
CONG:  Nonselective Consensus of one of more of the following Global Models 

(NGPI, JGSI, EGRI, AVNI) 
 
CONJ:  SAFA Corrected Nonselective Consensus (NGAI, EGAI, JGAI, JTYI, 

GFAI, COWI, AVNI, AFWI, TCLI) 
 
CONU:  As in CONJ except for NGPI, UKMI, JGSI, JTYI, GFNI, COWI, AFWI, 

AVNI 
 
CONW:  NGPI, EGRI, JGSI, JTYI, GFNI, COWI, AVNI, WBAI, AFWI, TCLI 
 
COWI:  COAMPS Tracker (interpolated) 
 
DRCL:  DeMaria Wind Radius CLIPER 
 
EGAI:  United Kingdom Meteorological Office (UKMO) SAFA Corrected Tracker 
 
GFAI:  GFDN Model SAFA Corrected Tracker (interpolated) 
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GFDL:  Geophysical Fluid Dynamic Laboratory Model (original) 
 
GFDI:  Geophysical Fluid Dynamic Laboratory Model (interpolated) 
 
GFDN:  Geophysical Fluid Dynamic Laboratory—Navy Model (original) 
 
GFNI:  Geophysical Fluid Dynamic Laboratory—Navy Model (interpolated) 
 
ICON:  Intensity consensus in which forecasters can de-select any of the models 

before calculating average intensity change 
 
JASD:  Japan Air Self Defense Force (JASDF) Model 
 
JAVN:  AVN model with CDR Fiorino substituted tracker 
 
JAVI:  AVN model with CDR Fiorino substituted tracker (interpolated) 
 
JGAI:  JMA Spectral Model SAFA Corrected Tracker (interpolated) 
 
JGSM:  Japan Meteorological Agency (JMA) Global Spectral Model 
 
JNGP:  NOGAPS model with (CDR Fiorino) substituted tracker 
 
JTWC:  Official forecast  
 
JTWI:  Official forecast (interpolated) 
 
JTYM:  JMA Typhoon Model (regional version of JGSM) 
 
JTYI:  JMA Typhoon Model (interpolated) 
 
JUKM:  UKMO model with CDR Fiorino substituted tracker 
 
NCON:  Nonselective Consensus of NGPI, GFDI, JGSI, JTYI, and EGRI models 
 
NGAI:  NOGAPS SAFA Corrected Tracker (interpolated) 
 
NGPS:  Navy Operational Global Atmospheric Prediction System (original) 
 
NGPI:  NOGAPS Model Tracker (interpolated) 
 
PTRO:  Meteo France Model Tracker 
 
PEST:  Probabilistic Ensemble System for the Prediction of Tropical Cyclones  
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RECR:  ‘TYAN78’ Statistical Recurver Data Set (not common anymore) 
 
RJTD:  JMA Warning 
 
RPMM:  Pagasa (Philippines) Warning 
 
SCON:  Selected Consensus of SAFA  
 
ST5D:  Statistical Typhoon Intensity Forecast (STIFOR)—5-Day 
 
STIP:  Statistical Typhoon Intensity Prediction Scheme  
 
STID:  Statistical Typhoon Intensity Prediction Scheme—Decay 
 
STII:  Statistical Typhoon Intensity Prediction Scheme (interpolated) 
 
STRT:  ‘TYAN78’ Statistical Straight Movers (not common anymore) 
 
UKMO:  United Kingdom Meteorological Office (UKMO) Model (original) 
 
UKMI:  United Kingdom Meteorological Office (UKMO) Model (interpolated) 
 
VHHH:  Hong Kong Warning 
 
WBAR:  Weber Barotropic Tropical Cyclone Track Prediction System 
 
WBAI:  Weber Barotropic Tropical Cyclone Track Prediction System  
 (interpolated) 
 
XTRP:  Extrapolation (from past 12h intensity) 
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APPENDIX B:  STATISTICAL TYPHOON INTENSITY FORECAST 
FIVE-DAY MODEL (ST5D) 

A. OVERVIEW 

The ST5D model is a five-day TC intensity change forecast model derived 

from climatology and persistence.  Climatology implies a long historical record of 

intensity changes for storms with a similar position and intensity, and persistence 

implies continuation of recent intensity change trends.  Since forecasters typically 

use dynamic models to provide real-time forecast guidance, ST5D becomes a 

‘control’ model to assess the performance (skill) of all the other models.  

However, ST5D may also be useful as a real-time guidance tool if only a few 

other techniques are available for predicting TC intensity (Knaff et al., 2003).  A 

test of ST5D performance began during July 2001 at the Joint Typhoon Warning 

Center (JTWC).  Initial testing showed improvement over the older three-day 

Statistical Typhoon Intensity Forecast (STIFOR) technique.  That is, the revisions 

made in generating the new version of the climatology and persistence technique 

called ST5D also improved the performance from 12 h to 72 h as well as 

providing guidance out to 120 h (5 days).  Chu (1994) discussed the original 

development of Statistical Typhoon Intensity Forecast (STIFOR) coefficients 

using a least-squares method for each of the seven predictors in the STIFOR 

model.  An eighth coefficient represents the bias of the regression.  The 

predictand in this older technique was future intensity (not intensity change) 

expressed as a linear combination of observable predictors. 

 

B. MODEL DESIGN 

Forecasting intensity change in ST5D requires the seven primary 

independent variables (predictors) listed in Table B.  The dependent variable 

(predictand) is simply the change in intensity from an initial intensity value along 

the official (JTWC) forecast track.  Historical storm track and intensity information 

used to derive the ST5D predictand was extracted from the JTWC’s 1967-2000 

best track datasets, including non-developing depressions that had not been 
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included in STIFOR.  The ST5D model incorporates these non-developing 

depressions due to the JTWC’s requirement to warn on tropical circulations 

exceeding 24 kt. 

-100 to 100ktTwelve-Hour Intensity Change (DVMX):  difference 
between current intensity and intensity 12 hours ago7

25 to 150ktCurrent Intensity (VMAX):  current storm intensity 6

-50 to 50ktMeridional Storm Speed (V):  N/S translation speed of 
storm; northerly motion is positive5

-50 to 50ktZonal Storm Speed (U):  E/W translation speed of storm; 
westerly motion is positive4

0 - 180deg. ELongitude (LON) 3

0 - 90deg. NLatitude (LAT) 2

-248 to 117dayJulian Day (JDAY): the absolute value of the initial 
yearday minus yearday 248 (the climatological ‘peak’)1

RangeUnitsPredictor

-100 to 100ktTwelve-Hour Intensity Change (DVMX):  difference 
between current intensity and intensity 12 hours ago7

25 to 150ktCurrent Intensity (VMAX):  current storm intensity 6

-50 to 50ktMeridional Storm Speed (V):  N/S translation speed of 
storm; northerly motion is positive5

-50 to 50ktZonal Storm Speed (U):  E/W translation speed of storm; 
westerly motion is positive4

0 - 180deg. ELongitude (LON) 3

0 - 90deg. NLatitude (LAT) 2

-248 to 117dayJulian Day (JDAY): the absolute value of the initial 
yearday minus yearday 248 (the climatological ‘peak’)1

RangeUnitsPredictor

 
Table B.1 Independent variables used in the ST5D. 

 
In addition to the seven primary predictors, ST5D uses 28 secondary 

predictors that consist of the squares and cross-products of the original seven.  

This creates a potential predictor pool of 35 variables where the best predictor 

combinations are determined using statistical methods.  By normalizing the 

regression coefficients, the larger magnitude coefficients exert greater influence 

on the forecast of the predictand (Knaff et al. 2003).  Multiple linear regression 

techniques are then applied to develop the forecast equations from the predictor 

pool.  Fourteen predictors are used in any ST5D intensity change forecast and 

three predictors are used in every forecast equation:  VMAX, LAT x VMAX, and 

VMAX squared.  

 
C. MODEL CHARACTERISTICS 

The ST5D intensity change forecast results show a marked improvement 

over earlier STIFOR intensity forecasts and persistence alone.  Nevertheless, 

caution should be exercised since this is the only year evaluated to date, and it is 

possible that the 2001 western North Pacific season may have had easier storms 
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to forecast.  Future results may indeed show that the statistical formulation of 

ST5D is superior to the original three-day STIFOR model.  In fact, the model 

formulation may explain critical differences between ST5D performance and its 

predecessor STIFOR.  Knaff et al. (2003) discuss predictor selection that allows 

the forecast equations to actually evolve over the 120-h forecast period.  The 

earlier climatology and persistence model included only those predictors that 

explained at least 0.5% of the predictand variance.  Additionally, the inclusion of 

quadratic terms explains more variance relative to the model’s linear terms. 

The combined predictor JDAY x VMAX suggests intense storms—and 

storms that form farther from the peak of season (early season or late season)—

will weaken more rapidly in the western North Pacific basin.  An ST5D evaluation 

of intensity bias (for the 1997-2000 seasons) shows increasingly negative 

intensity change biases as forecast time increases (Knaff et al. 2003)  A negative 

value indicates that, on average, western North Pacific TC intensity change is 

under-forecast.  Maximum absolute error is smaller than the SHIFOR error at all 

time periods—and much smaller beyond 36 h.  Moreover, the magnitude of 

intensity change errors levels off beyond 84 h, which indicates good model 

performance and forecasts better than persistence.  

  

D. SUMMARY 

While the ST5D model serves as a ‘control’ forecast to evaluate the skill of 

TC intensity forecasts, it still provides useful real-time guidance to operational 

forecasters because not many skillful techniques are available.  Comparisons 

between ST5D and the older STIFOR technique demonstrate smaller mean 

absolute intensity errors with an overall negative intensity change bias.  Since 

ST5D is a statistically significant improvement over STIFOR, its guidance at 

three, four, and five days becomes harder to outperform.  In turn, this increases 

the challenge of operational forecasters to produce skillful TC intensity forecasts.     



80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



81 

APPENDIX C:  STATISTICAL TYPHOON INTENSITY PREDICTION 
SCHEME (STIP) 

A. OVERVIEW 

The STIP model is a statistical-dynamical intensity prediction model that 

combines the predictive strengths of statistical and dynamical approaches to 

intensity forecasting in the western North Pacific.  The National Hurricane Center 

(NHC) has tested the original model, called Statistical Hurricane Intensity 

Prediction Scheme (SHIPS), for tropical cyclone intensity forecasts in the North 

Atlantic.  The western North Pacific version of the model, called STIP for 

typhoons rather than hurricanes, began trial runs in the 2001 season at the Joint 

Typhoon Warning Center.  Statistical contributions are extracted from variables 

related to climatology, persistence, and environmental factors that may influence 

future storm intensity.  Dynamical contributions are derived from numerical 

weather prediction models, and include predictors related to the current and 

future synoptic environment.  Statistical regressions of potential predictors isolate 

only those that have an ability to predict the dependent variable (tropical cyclone 

intensity changes over various intervals to 120 h).  Derivation of a final predictor 

pool (independent variables) depends on official tropical cyclone track forecasts 

issued by the JTWC—several of the potential predictors are integrated along this 

track rather than just estimated at the initial location.     

 

B. MODEL DESIGN 

The STIP historical dataset is derived from over five years of Navy 

Operational Global Atmospheric Prediction System (NOGAPS) analyses of 

temperature, wind, water vapor pressure, and geopotential height data at many 

pressure levels—100, 150, 200, 250, 300, 400, 500, 700, 850, 925, and 1000 

hPa.  Additionally, the ocean skin temperature serves as a surrogate for sea-

surface temperature.  Other important historical predictor variables are gleaned 

from the JTWC best track data:  tropical cyclone (TC) dates, positions, and 

intensities (to the nearest five knots) at six-hour intervals.  The assumption here 
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is that the observed TC information and TC-related variables from the analysis 

fields represent long-term (i.e., climatological) synoptic conditions/regimes and 

TC lifecycles.  These fields form the basis for the statistical portion of the model.     

Since STIP is a multiple linear regression model, only the most statistically 

significant predictors remain in the predictor pool—based upon a combined 

ability to forecast intensity change.  Knaff et al. (2004) describe this forecast 

scheme, which requires 10 predictive equations to forecast intensity change (the 

predictand) from an initial forecast time (in 12-hour intervals).  The scheme also 

includes the 11 final predictors listed in Table C.  These predictors are related to:  

i) climatology/persistence and intensity trends; ii) intensity potential as a function 

of current intensity and sea-surface temperature (SST); iii) the combined effect of 

vertical wind shear; and iv) convective instability.  The statistical regression also 

minimizes the variance explained. Therefore, statistical techniques are more 

skillful for a large number of small intensity changes and are usually not as 

accurate for the extreme intensity changes. 

24 hRHHI:  area-averaged (200 km to 800 km) 500-300 
hPa relative humidity.     11

36 hT200:  area-averaged (200 km to 800 km) 
temperature at 200 hPa10

60 hUSHRD:  area-averaged (200 km to 800 km) 200-
850 hPa zonal wind shear9

12 hSHRD:  area-averaged (200 km to 800 km) 200-
850 hPa vertical wind shear8

12hMPI * VMAX:  potential intensity * initial intensity7

24 hMPI2:  potential intensity squared6

24 hMPI:  potential intensity5

12 hVMAX2:  initial intensity squared4

12 hVMAX:  initial intensity3

60 hSPDX:  storm translation speed2

12 hDVMX:  past 12-h intensity change1

Forecast Hour Predictor Has 
Greatest Contribution to 

Individual Forecast Equation
Predictor

24 hRHHI:  area-averaged (200 km to 800 km) 500-300 
hPa relative humidity.     11

36 hT200:  area-averaged (200 km to 800 km) 
temperature at 200 hPa10

60 hUSHRD:  area-averaged (200 km to 800 km) 200-
850 hPa zonal wind shear9

12 hSHRD:  area-averaged (200 km to 800 km) 200-
850 hPa vertical wind shear8

12hMPI * VMAX:  potential intensity * initial intensity7

24 hMPI2:  potential intensity squared6

24 hMPI:  potential intensity5

12 hVMAX2:  initial intensity squared4

12 hVMAX:  initial intensity3

60 hSPDX:  storm translation speed2

12 hDVMX:  past 12-h intensity change1

Forecast Hour Predictor Has 
Greatest Contribution to 

Individual Forecast Equation
Predictor

 
Table C.1 Final predictors in the STIP model. 
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A decay-over-land version of STIP (STID) accounts for landfalling tropical 

cyclones and their subsequent intensity reduction.  That is, the model 

exponentially decays TCs based upon their projected track.  Tracks are 

interpolated to hourly positions and a land mask determines if the TC crosses a 

coast.  This decay process begins at the landfalling intensity. 

 
C. MODEL CHARACTERISTICS 

The regression analysis revealed favorable and unfavorable conditions for 

TC intensification.  For example, smaller values of area-averaged vertical wind 

shear (SHRD), and higher values of area-averaged relative humidity (RHHI), 

favor intensification.  Conversely, higher values of SHRD and lower values of 

RHHI favor decay.  These same findings, when applied to the predictand (DELV), 

reveal a general (mean) tendency for western North Pacific storms to intensify 

along the TC track (Knaff et al. 2004). 

Knaff et al. (2004) discussed recent developmental performance of 

dependent data and showed that the maximum absolute error increased at all 

time periods.  However, the trend plateaus beyond the 72-hour point:  20.7 kt (96 

h); 21.2 kt (108 h); 21.8 kt (120 h).  There also appears to be a preferred range of 

initial intensities and SSTs favoring TC intensification:  SSTs greater than 28°C 

and initial intensities between 30 and 110 kt.  Furthermore, the greatest intensity 

changes at 12 h and 24 h (~ 15 kt/day) occur when SSTs exceed 29.25°C and 

initial intensities are 75 to 80 kt.      

 
D. SUMMARY 

The STIP leverages the best statistical and dynamical tropical cyclone 

intensity predictors to create TC intensity guidance for use in the western North 

Pacific basin.  The STIPS performs skillfully when the TCs intensify/decay at an 

average (climatological) rate.  Conversely, STIPS is not as skillful for rapidly 

intensifying/decaying TCs.  Forecast accuracy also relies on the accuracy of the 

forecast track and the quality of storm intensity and intensity change estimates.  

Additionally, the dynamical variables extracted along the forecast track require 
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accurate specification/initialization.  A significant model assumption is the use of 

ocean skin temperature in lieu of ocean mixed-layer temperature.  Therefore, 

possible (future) STIPS improvements may include the use of satellite data and 

ocean heat content in the predictor pool. 
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APPENDIX D:  GEOPHYSICAL FLUID DYNAMICS 
LABORATORY—NAVY MODEL (GFNI) INTERPOLATED 

A. OVERVIEW 

The GFDN is a modified version of the Geophysical Fluid Dynamics 

Laboratory (GFDL) hurricane prediction system.  The National Weather Service 

adopted this model as an ‘operational’ Atlantic hurricane model starting in the 

1995 hurricane season.  In an effort to improve tropical cyclone (TC) forecasts for 

the western North Pacific, researchers at the Navy’s Fleet Numerical 

Meteorological and Oceanographic Center (FNMOC) installed the GFDL model 

using the Navy Operational Global Atmospheric Prediction System (NOGAPS) 

analyses and forecasts for the initial and boundary conditions to create what is 

known as GFDN.  This modification provided an additional track prediction tool 

for JTWC forecasters, and also demonstrated improvement over purely statistical 

(climatological) intensity guidance beginning in the 1996 western North Pacific 

typhoon season (Rennick 1999).  In addition to TC track forecasts, the GFDN 

also produces intensity change forecasts twice a day (out to 84 h) for storms in 

the western North Pacific.  

Rennick (1999) explains the strategy for operational use of the GFDN in 

the western North Pacific.  Each model forecast is tied to the JTWC operational 

procedures.  Specifically, whenever one or more TCs are active within the JTWC 

area of responsibility, forecasters issue a TC bogus message that lists active 

tropical cyclone (ranked in order of precedence) locations, central pressures, 

radius and speed of maximum wind, and pressure of the last closed isobar.   

 

B. MODEL DESIGN 

Three computational nests are used in the GFDN:  a one-degree grid to 

represent the synoptic environment; a 1/3-degree grid for storm environment 

calculations; and a 1/6-degree grid for storm inner core.  The NOGAPS global 

analyses provide initial environmental conditions for the GFDN.  As noted above, 
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storm-specific initialization comes from the JTWC as a TC ‘bogus’ message.  

Thereafter, NOGAPS forecast fields supply the boundary conditions for the 

integration on the 1/3-degree grid. 

The process of removing the storm structure from the background 

NOGAPS flow and replacing it with an axisymmetric vortex ties the storm 

environmental field to the larger domain and ensures the compatibility of the 

specified vortex to the prediction model (Kurihara et. al. 1993).  The entire vortex 

specification process follows: 

• a crudely-resolved TC in the NOGAPS is replaced by a vortex 
properly specified for the GFDN model resolution; 

• filtering techniques remove the vortex from the NOGAPS analysis 
to leave a smooth background field;  

• a newly-specified vortex becomes the deviation from the 
background field;  

• this new vortex has both axisymmetric and asymmetric 
components;   

• the axisymmetric component results from time integration of an 
axisymmetric version of the model with the JTWC-specified vortex 
characteristics being forced ; and  

• the asymmetric component from the previous model integration is 
inserted at the proper position. 

A triply-nested, moveable-mesh system ensures that the highest 

resolution grid remains centered over the storm center (Kurihara et al. 1998). The 

vortex replacement provides excellent TC detection capability for western North 

Pacific tropical systems (Rennick 1999).   

Several recent upgrades have been made to improve the GFDN storm 

intensity forecasts.  The current physics include a modified cumulus 

parameterization scheme, enhanced surface flux calculation, an improved 

vertical diffusion scheme, and comprehensive radiative effects (Bender et al. 

2001).  Additionally, the Atlantic GFDL model was coupled with the Princeton 

Ocean Model (POM) in 2001, which provides a prediction of the sea-surface 

temperature based on the upper-ocean mixed layer physics.  The POM is 

initialized using real-time NCEP sea-surface temperature data in conjunction with 
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climatological ocean data to infer sub-surface characteristics (e.g., thermocline 

and mixed-layer depth). 

 
C. MODEL CHARACTERISTICS 

The GFDN model is integrated with storms of tropical depression strength 

or greater, and the high-resolution grid over the storm center produces relatively 

good estimates of TC intensity.  However, Rennick (1999) cites some critical 

model weaknesses, such as:  (i) a reduced ability to predict weaker tropical 

systems (e.g., depressions); (ii) the timing and location of storm recurvature; and 

(iii) unrealistic storm intensification in strongly sheared environments.  Since the 

GFDN is ‘resource intensive,’ it has a long run time—approaching 70 minutes for 

an 84 h forecast (GFDN web page, cited 2005). 

As is shown in the text, the model had an overall negative intensity bias 

during 2003 and 2004, which indicates under-forecasts of intensity change.  

Nevertheless, the model should provide useful intensity change forecasts for 

storms not encountering strong vertical shear (Bender et al. 2001). 

 
D. SUMMARY 

Continued improvements to the operational GFDN have significantly 

increased the model’s TC intensity prediction capability.  Forecast studies 

demonstrate the good performance of the GFDN when compared to other 

dynamic models. 
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APPENDIX E:  AIR FORCE WEATHER AGENCY MESOSCALE 
METEOROLOGICAL MODEL-5 (AFWI) INTERPOLATED 

A. OVERVIEW 

The Air Force Weather Agency (AFWA)/National Center for Atmospheric 

Research (NCAR)/Penn State University (PSU) Mesoscale Meteorological 

Model-5 (MM5) produces TC forecasts for several ‘tropical’ windows around the 

world.  These tropical model forecasts are produced twice a day and provide text 

output of future storm location and intensity change out to 72 h.  The forecast 

files are subsequently incorporated in the JTWC Automated Tropical Cyclone 

Forecast System (ATCF).  Additionally, the AFWA Technology Exploitation 

Branch (DNXT) produces visualizations of forecast TC track (and intensity 

change) using special, post-processing graphics programs.  These forecast 

graphics are located on the Joint Army Air Force Weather Information Network 

(JAAWIN) [Available online at https://weather.afwa.af.mil (Current as of 10 Mar 

05)]. 

 
B. MODEL DESIGN 

A few differences are noted between the MM5 tropical version and the 

operational MM5 application for midlatitude weather prediction.  First, the tropical 

model windows are run with a different vertical resolution than midlatitude 

windows.  There are 31 half-sigma levels in the tropical windows, versus 41 half-

sigma levels in the midlatitude versions.  The primary MM5 window over the 

western North Pacific is T19.  This window contains a 15-km inner nest that is 

placed by the AFWA Satellite Applications Branch (XOGM). The domain is 

usually centered over the storm at the beginning of the model run, which may 

result in a fast-moving storm exiting the window before the forecast is over 

(private communication, 28 Oct 2004, Capt LaCroix AFWA/DNXM). 

The MM5 tropical application is initialized using first-guess fields (and 

lateral boundary conditions) from the NCEP Global Forecast System (GFS) 

analyses and updated with observations (surface and/or upper air).  Currently, 
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the operational version of the AFWI model utilizes the 3-Dimensional Variational 

Data Assimilation (3D-VAR) scheme to produce the initial model fields.  This 

initialization includes a subtraction of the TC representation from the GFS first-

guess fields, followed by the addition of a bogused storm vortex using the storm 

latitude/longitude and information on the radius of maximum winds provided by 

the JTWC.   

Since a horizontal resolution of 45 km will lead to underestimates of storm 

intensity, an inner nest that has 15 km resolution will resolve more aspects of the 

core of the storm (Davis and Low-Nam 2001).  A grid spacing less than 15 km 

will be required to fully resolve inner-core dynamics.  The Grell cumulus 

parameterization technique implicitly accounts for convective processes 

occurring on scales much smaller than the actual grid resolution.  However, 

Davis and Low-Nam (2001) state that the Grell scheme tends to be inactive in 

triggering cumulus convection, which will lead to more grid-resolved precipitation. 

Future AFWA model improvements may include:  (i)  upgrading to the 4-

Dimensional Variational Data Assimilation (4D-VAR) scheme;  (ii) coupling with 

the Princeton Ocean Model (POM) to better simulate air/sea interaction; and (iii) 

switching to a moveable, fine-scale nest centered on the storm (rather than the 

fixed 15-km inner nest currently used) (Hausman webpage reference, cited 

2005). 

 

C. MODEL CHARACTERISTICS 

The focus of the AFWA MM5 applications remains on forecasting the 

midlatitude mesoscale features (e.g., convective systems and frontal boundaries) 

that most significantly impact military operations.  Since predictions for 

midlatitude phenomena coincide with the largest degree of military interest, more 

forecast verifications have been over North America and Europe.  Consequently, 

forecasts generated in the tropical windows are usually not verified, or verified 

infrequently (private communication, 09 Mar 2005, Capt LaCroix AFWA/DNXM).  
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Therefore, there is no well-established record of AFWA typhoon forecast 

performance in the T19 window. 

  
D. SUMMARY 

The dynamic AFWA model with an inner grid resolution of 15 km produces 

TC intensity change guidance that is provided to the JTWC.  While the 

initialization scheme and bogusing technique generally produce good initial 

representations of the modeled storm, other facets of model design fail to capture 

many aspects of TC intensity change.  Although there is significant military 

interest in verifying midlatitude AFWA-generated forecasts, the TC forecasts 

produced in the MM5 tropical windows are often a lesser priority, and forecast 

verification statistics are lacking.   
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APPENDIX F:  COUPLED HURRICANE INTENSITY PREDICTION 
SYSTEM (CHIP) 

A. OVERVIEW 

The CHIP model is a coupled hurricane/ocean model that utilizes the 

recent tropical cyclone intensities in the initialization and the current storm 

environment to make dynamic adjustments to the initial intensity to produce an 

intensity forecast.  Intensity forecasts are made by moving the model storm along 

the official forecast track from the JTWC.  Emanuel et al. (2004) describe the 

model response to changes in the storm environment, to include the time-

dependent SST under the storm center.  The assumption is that internal storm 

fluctuations (e.g., eyewall replacement cycles) and asymmetric structures are of 

secondary importance to predicting the intensity.  Another key assumption is that 

the SST modifications along the tropical cyclone track may be represented by a 

simple one-dimensional ocean model, rather than a fully three-dimensional 

ocean model.  

 
B. MODEL DESIGN 

The following environmental factors contribute to model storm intensity:  

pre-storm thermodynamics (i.e., potential intensity and storm-related SST 

anomalies); vertical shear of the horizontal wind; and dynamic upper-level 

perturbations (i.e., short waves).  Emanuel (1995a) designed CHIP using the 

assumptions of environmental gradient flow and hydrostatic balance within an 

axisymmetric storm.  The vertical structure of the vortex remains close to neutral 

stability, so that moist air ascending from the sea surface to some pressure level 

aloft follows moist adiabats (lines of constant θe).  The SST under the center then 

has a crucial role because it determines the θe value for the ascending air 

parcels, and thus the potential warming of the air.  Additional atmospheric 

considerations are given below: 
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• vertical structure is determined by radial distribution of planetary 
boundary layer moist entropy and by vorticity at the tropopause; 

• moist convection is represented by one-dimensional updraft and 
downdraft plumes; and 

• steady-state intensity is based on potential intensity (the maximum 
steady intensity a storm would have if the heat input is maximized 
via air/ocean sensible and latent heat flux). 

A simple one-dimensional ocean model is used to predict SST changes 

along the official forecast track (Schade and Emanuel 1999).  The CHIP ocean 

component requires an initial ocean state described by the following variables:   

SST; mixed layer depth; temperature jump at the base of the mixed layer; and 

the lapse rate below mixed layer.  Conventional aerodynamic formulae are then 

used to describe air/sea surface fluxes and account for mixed-layer momentum 

processes due to surface (wind) stress driving large currents and entrainment.  

When the critical value of the bulk Richardson number (ratio of vertical shear of 

ocean current to the stability) is exceeded, mixing occurs at the base of the 

mixed layer, which decreases the SST and increases the mixed layer depth. The 

atmospheric model responds to this sea-surface temperature/upper-ocean 

thermal structure modification under the eye.  Inertial oscillations in the mixed 

layer wake are not addressed in this simple, one-dimensional ocean model.   

Model initialization begins with past and predicted six-hour storm positions 

provided by the JTWC and the intensities are linearly interpolated in time to 

coincide with the model’s six-hour time step.  The environment at storm inception 

is used to calculate the storm potential intensity based on the latest weekly sea-

surface temperature and high-resolution (1° x 1°) atmospheric temperature 

analyses from 0000 UTC on the day prior to storm inception (from National 

Centers for Environmental Prediction—NCEP).  The Center for Land-Atmosphere 

Prediction (COLA) utilizes an algorithm described in Bister and Emanuel (2002) 

to calculate storm potential intensity.  Since real-time ocean state analyses are 

not available, monthly mean climatological data are used to define mixed layer 

depth and the temperature jump at the base of the mixed layer.  These values 
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are linearly interpolated in space and time to match the storm best track or 

forecast position.   

Dissipative effects are captured via:  (i) a shear parameterization scheme 

and (ii) a landfall algorithm.  First, vertical shear estimates originate from 

averaged 850 to 200-hPa NCEP horizontal wind analyses and forecast models 

(e.g., GFS).  This averaging effectively eliminates shear associated with the 

storm circulation.  The NCEP-derived vertical shear is used to force ventilation of 

the storm by trending the model equivalent potential temperature toward a 

climatological mid-tropospheric equivalent potential temperature.  Therefore, 

large vertical shear values represent near-climatological equivalent potential 

temperature values, which are less conducive to sustaining deep convection.  

Knowing the prior storm intensities, the SSTs along the prior track, and using this 

mid-tropospheric equivalent potential temperature as a proxy for vertical shear, 

the model is integrated with values of this proxy.  The value that leads to the best 

representation of the intensity history is selected and then used for launching the 

intensity forecast from CHIP.  

Second, the Emanuel hurricane model uses a landfall algorithm to adjust 

intensity forecasts as the storm center comes ashore.  An enthalpy exchange 

coefficient accounts for sensible and latent heat fluxes between land and 

overlying storm.  This coefficient decreases linearly with land elevation and 

reaches zero at 40 meters.  However, the rate of decrease is slowed if the storm 

passes over relatively flat terrain with standing water (e.g., the Florida 

Everglades).   By quickly reducing the sensible and latent heat fluxes over the 

land, the equivalent potential temperature under the eyewall decreases rapidly, 

deep convection is eliminated, and the predicted intensity decreases. 

 
C. MODEL CHARACTERISTICS 

Since the Emanuel hurricane model is axisymmetric, the environment is 

quiescent.  Therefore, an axisymmetric model ignores baroclinic effects on 

tropical cyclone intensity, such as storm interaction with midlatitude disturbances, 

and fluxes of mass and momentum are not evaluated across streamlines.  
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Consequently, the model is susceptible to large intensity errors in the presence 

of vertical wind shear.  As indicated above, Emanuel’s ‘shear parameter’ acts as 

a ‘thermal’ surrogate for vertical wind shear.  Otherwise, the model develops 

(intensifies) storms as if no shear were present.  While this setting of the mid-

tropospheric equivalent potential temperature results in improvements over 

earlier CHIP versions that did not include the ‘shear parameter’, model solutions 

diverge when the model TC is moving into large shear environments. 

Another potential error source is the calculation of the surface enthalpy 

and momentum fluxes, because these coefficients vary with the surface wind 

speed (Emanuel 1995b).  These flux values are critical to storm intensity 

changes in the Emanuel model, and are difficult to measure.  Emanuel found 

that, to a good approximation, setting the enthalpy and momentum flux 

coefficients to be equal and to increase linearly with gradient wind speed appears 

to work well in this model.  However, the coefficients may not increase linearly 

beyond 28-30 m/s, which would affect the model intensity forecast.       

Despite the simplicity of the hurricane/ocean model (relative to more 

complex dynamic models such as the Geophysical Fluid Dynamics Laboratory 

Model—GFDL), it does have some strengths.  For example, experimental CHIP 

predictions in the Atlantic basin show some skill over purely statistical guidance 

(e.g., Statistical Hurricane Intensity Forecast, or SHIFOR) when the cyclone is 

not in large shear.  The early success may be (in part) due to the accuracy of the 

one-dimensional ocean model, which nearly mirrors predicted SST decreases 

from ocean feedback of more sophisticated three-dimensional ocean models—at 

least under the leading edge in advance of the center.  Another benefit is the 

model run time is only on the order of one minute on a typical personal computer.      

 

D. SUMMARY 

The dynamic hurricane/ocean CHIP model focuses on key atmospheric 

and oceanic contributions to tropical cyclone intensity.  While the physical 

processes and air/sea interactions are very complex, the model addresses only 
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the critical processes of decreasing SST and environmental vertical shear that 

have significant roles in tropical cyclone intensity.  Significant model assumptions 

include an axisymmetric cyclone, initial SSTs that are averaged over a week, a 

climatological upper-ocean thermal structure under the forecast storm track, and 

a negative intensity response to storm-induced SST decreases.  Therefore, CHIP 

should perform well under the following conditions:  in a low wind shear 

environment; when the forecast storm track overlies SSTs/upper thermal 

structure at or very near long-term averages; and if the storm does not 

significantly decrease SSTs along the projected track (e.g., mixing of the surface 

layer).  Nevertheless, the accuracy of all CHIP forecasts is intimately tied to the 

accuracy of the official track forecast and the quality of storm intensities used for 

the initialization.   
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APPENDIX G:  JAPAN METEOROLOGICAL AGENCY TYPHOON 
MODEL (JTYI) INTERPOLATED 

A. OVERVIEW 

The Japan Meteorological Agency (JMA) Typhoon Model (JTYM) 

produces typhoon track and intensity forecasts over the western North Pacific.  

This model generates TC predictions four times a day (out to 84 h) for up to two 

TCs at a time.  In addition to track and intensity predictions, the model also 

produces forecasts of the 30-kt wind radii and 50-kt wind radii (in four quadrants).   

 
B. MODEL DESIGN 

Currently, the Japan Global Spectral Model (JGSM) provides the initial 

and boundary conditions to the JTYM.  The latest operational version of the GSM 

utilizes the 3-Dimensional Variational Data Assimilation (3D-VAR) scheme to 

produce the initial model fields.  The JTYM is on a relocatable grid, such that the 

domain is relocated based on the initial storm position, and the model TC 

remains far removed from lateral boundaries.  The horizontal grid increment is 24 

km and 25 hybrid (sigma-pressure) layers are used in the vertical.  A synthetic 

TC circulation (interpolated from the Global Spectral model analyses) is forced 

into the model initial fields.  That is, the synthetic TC requires knowledge of the 

latitude/longitude, central pressure, and radius of 30 kt winds from forecaster 

analyses (JMA web document, cited 2005).  

 

C. MODEL CHARACTERISTICS 

The computing system improvements implemented during March 2001 

reduced the previously-observed weakening bias for intense storms (JMA web 

document, cited 2005).  As is shown in the text, this technique tends to forecast 

rather conservative rates of intensity change, especially during the intensification 

stage.  Another characteristic is that the model tends to produce nearly-steady 

intensity change forecasts during periods of significant intensity change (similar 

to the AFWA technique described in Appendix E).  However, a more complete 
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overview of model characteristics is currently not possible, as none of the web-

based resources discusses model performance, and no published articles 

detailing the model characteristics were found.   

 

D. SUMMARY 

The JTYM is an additional TC track and intensity guidance technique 

available to forecasters at the JTWC.  While JTYM intensity guidance output is 

available four times a day, the accuracy of each forecast often suffers during key 

stages in the storm life cycle. 

 

 

 

 

 

 

 

 

 

 



101

APPENDIX H:  DEFINITIONS 

Above-average Intensification (Decay):  forecast or observed intensification 
(decay) rates between 20 and 30 kt. 

 
Average-lived Storm:  TCs lasting from six to 12 days.   
 
Broad Peaking:  model or TC peak intensity that exceeds the usual shorter-

duration intensity peak, and thus results in delayed decay. 
 
Flat Forecast:  forecast intensity remains nearly steady throughout the forecast 

period, despite increasing/decreasing best track intensity.  
 
Intensity Jump:  dramatic increase in model TC intensity from one 6 h forecast to 

the next ; a symptom of the model not being able to keep up with the actual 
rate of intensification (or decay). 

 
Long-lived Storm:  TCs lasting longer than 12 days.  
 
Multiple-peaked Storm:  two or more intensity peaks in the best track intensity 

profile that meet the definition of ‘secondary peak’. 
 
Overshooting:  series of model intensity forecasts exceeding actual intensity 

change. 
 
Phase Duration:  duration of best track storm information in each of the three 

phases of the intensity framework (I, II, and III). 
 
Primary Decay:  steady decay following peak intensity, or final storm decay 

following any reintensification periods. 
 
Primary Peak:  largest observed intensity taken at the mid-point (date/time) of the 

best track intensity profile while at peak intensity. 
 
Rapid Intensification (Decay): an increase (decrease) in observed storm intensity 

of 30 kt or greater in 24 h, 45 kt or greater in 36 h, or 60 kt or greater in 48 h.  
 
Secondary Peak:  a distinct reintensification of 15 kt or greater following an initial 

decay cycle of 15 kt or greater (e.g., eyewall replacement cycle). 
 
Short-lived Storm:  TCs lasting less than six days. 
 
Slow Intensification (Decay):  forecast or observed intensification (decay) rates 

less than 10 kt/day. 
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Storm Duration (Life Span):  total duration of the best track storm information 
(days).  

 
Storm Peak Span:  duration of storm peak intensity (days). 
 
Typical Intensification (Decay):  forecast or observed intensification (decay) rates 

between 10 and 20 kt/day. 
 
Undershooting:  series of model intensity forecasts remaining below actual 

intensity change. 



103

LIST OF REFERENCES 

AFWA/DNXM, cited 2005:  HQ AFWA’s implementation of the Mesoscale Model 
Version 5 (MM5).  [Available online at 
https://weather.afwa.af.mil/HOST_HOME/DNXM/ABOUTMM5/index.html 
(Current as of 10 Mar 05)]. 

 
Bender, M. A., I. Ginis, T. P. Marchok, and R. E. Tuleya, cited 2005:  Changes to 

the GFDL hurricane forecast system for 2001 including implementation of the 
GFDL/URI hurricane-ocean coupled model.  [Available online at 
http://www.gfdl.noaa.gov/research/weather/tpb_gfdl.html (Current as of 10 
Mar 05)]. 

 
Bister, M., and K. A. Emanuel, 2002:  Low frequency variability of tropical cyclone 

potential intensity 2.  Climatology for 1982-1995. J. Geophys. Res., 107, 
4621, doi:10.1029/2001JD000780.  

 
Carr, L. E., III, and R. L. Elsberry, 1994:  Systematic and integrated approach to 

tropical cyclone track forecasting. Part I. Approach overview and description 
of meteorological basis. Tech. Rep. NPS-MR-94-002, Naval Postgraduate 
School, Monterey, CA 93943-5114, 273 pp. 

 
Chu, J. H., 1994:  A regression model for the western North Pacific tropical 

cyclone intensity forecasts. NRL Memo. Rep. 7541-94-7215, Naval Research 
Laboratory, Monterey, CA 93943-5502, 33 pp. 

 
Davis, C.A., and S. Low-Nam, 2001:  The NCAR-AFWA tropical cyclone 

bogussing scheme.  Tech. Memo to the Air Force Weather Agency (AFWA), 
Offutt AFB, NE, 13 pp. 

 
DeMaria, M., and J. Kaplan, 1999:  An updated hurricane intensity prediction 

scheme (SHIPS) for the Atlantic and eastern North Pacific.  Wea. 
Forecasting, 14, 326-337. 

 
Emanuel, K. A./MIT, cited 2005:  Limits on hurricane intensity.  [Available online 

at http://wind.mit.edu/~emanuel/holem/holem.html (current as of 04 Mar 05)]. 
 
Emanuel, K. A., 1986:  An air-sea interaction theory for tropical cyclones. Part I: 

Steady-state maintenance.  J. Atmos. Sci., 43, 585-604. 
 
Emanuel, K. A., 1995a:  The behavior of a simple hurricane model using a 

convective scheme based on subcloud-layer entropy equilibrium.  J. Atmos. 
Sci., 52, 3959-3968. 

  



104

Emanuel, K. A., 1995b:  Sensitivity of tropical cyclones to surface exchange 
coefficients and a revised steady-state model incorporating eye dynamics.  J. 
Atmos. Sci., 52, 3969-3976. 

 
Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004:  Environmental 

control of tropical cyclone intensity.  J. Atmos. Sci., 61, 843-858. 
 
GFDN/FNMOC, cited 2005:  Geophysical Fluid Dynamics Laboratory-Navy 

model (GFDN) description.  [Available online at 
https://www.fnmoc.navy.mil/PUBLIC/MODEL_REPORTS/MODEL_SPEC/gfd
n.html (Current as of 13 Mar 05)]. 

 
Harr, P. A., and R. L. Elsberry, 2000:  Extratropical transition of tropical cyclones 

over the western North Pacific.  Part I:  Evolution of structural characteristics 
during the transition process.  Mon. Wea. Rev., 128, 2613-2633. 

 
Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000:  Extratropical transition of 

tropical cyclones over the western North Pacific.  Part II:  The impact of 
midlatitude circulation characteristics.  Mon. Wea. Rev., 128, 2634-2653.   

 
Holland, G. J., 1997:  The maximum potential intensity of tropical cyclones.  J. 

Atmos. Sci., 54, 2519-2541. 
 
Holliday, C. R., and A. H. Thompson, 1979:  Climatological characteristics of 

rapidly intensifying typhoons.  Mon. Wea. Rev., 107, 1022-1034.    
 
Hausman, S./AFWA, cited 2005:  Models, models everywhere…literally.  

[Available online at 
https://afweather.afwa.af.mil/observer/JUL_AUG_2001/Models,_Models_ 
everywhere...literally (Current as of 10 Mar 2005)]. 

 
Jeffries, R. A., and E. M. Fukada/JTWC, cited 2005:  Consensus approach to TC 

forecasting.  [Available online at 
http:www.npmoc.navy.mil/jtwc/atcr/2002atdr/ch6/chap6_page1.html (Current 
as of 03 Mar 05)].   

 
JMA, cited 2005:  Numerical model descriptions [Available online at 

http://www.jma.go.jp/JMA_HP/jma/jma-eng/jma-center/nwp/outline-
nwp/pdf/ol4_6.pdf (Current as of 10 Mar 05)]. 

 
Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000:  Extratropical transition of 

western North Pacific tropical cyclones:  An overview and conceptual model 
of the transformation stage.  Wea. Forecasting, 15, 373-395. 

 



105

Knaff, J. A., M. DeMaria, C. R. Sampson, and J. M. Gross, 2003:  Statistical, five-
day tropical cyclone intensity forecasts derived from climatology and 
persistence. Wea. Forecasting, 18, 80-92. 

 
Knaff, J. A., M. DeMaria, and C. R. Sampson, 2004:  An operational statistical 

typhoon intensity prediction scheme for the western North Pacific.  Manuscript 
submitted to Wea. Forecasting. 

 
Miller, B. I., 1958:  On the maximum intensity of hurricanes.  J. Meteor., 15, 184-

195. 
 
Rennick, M. A., 1999:  Performance of the Navy’s tropical cyclone prediction 

model in the western North Pacific basin during 1996.  Wea. Forecasting, 14, 
297-305. 

 
Schade, L. R., and K. A. Emanuel, 1999:  The ocean’s effect on the intensity of 

tropical cyclones:  Results from a simple coupled atmosphere-ocean model. 
J. Atmos. Sci., 56, 642-651. 

 
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982:  Concentric eye walls, 

secondary wind maxima, and the evolution of the hurricane vortex.  J. Atmos. 
Sci., 39, 395-411. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



106

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



107

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Air Force Weather Technical Library 
Asheville, North Carolina 

 
4. Air Force Institute of Technology 

Wright-Patterson Air Force Base, Ohio 
 
5. Professor Philip A. Durkee 

Naval Postgraduate School 
Monterey, California  
 

6. Professor Russell L. Elsberry 
Naval Postgraduate School 
Monterey, California  

 
7. Mark A. Boothe 

Naval Postgraduate School 
Monterey, California  
 

8. Director, Joint Typhoon Warning Center 
Naval Pacific Meteorology and Oceanography Center 
Pearl Harbor, Hawaii 

 
9. Captain Jason S. Blackerby 

Joint Typhoon Warning Center 
Pearl Harbor, Hawaii 

 
 

 


